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Abstract. We prove that a finite graph (allowing loops and multiple edges) is homeomorphic
(isomorphic up to vertices of degree two) to the Reeb graph of a Morse–Bott function on a
smooth closed n-manifold, for any dimension n ≥ 2. The manifold can be chosen orientable or
non-orientable; we estimate the co-rank of its fundamental group (or the genus in the case of
surfaces) from below in terms of the cycle rank of the graph. The function can be chosen with
any number k ≥ 3 of critical values, and in a few special cases with k < 3. In the case of surfaces,
the function can be chosen, except for a few special cases, as the height function associated with
an immersion in R

3.

1. Introduction

Given a smooth manifold M , the Reeb graph Rf of a smooth function f : M → R is a topological
space obtained by contracting the connected components of the level sets of f to points, endowed
with the quotient topology. The Reeb graph shows the evolution of the topology of the level sets,
thus providing important information on the behavior of the function. The notion of the Reeb
graph has found important applications in computer graphics, data analysis and visualization,
geometric model databases, shape analysis, and other areas of applied mathematics and computer
science [1].

The notion of the Reeb graph was introduced in 1946 for Morse functions on a compact mani-
fold [17]. Later, its topological properties were studied for more general types of functions on a
compact manifold., e.g., functions with finite number of critical points [9, 15, 19], functions with
finite number of critical values [13], Morse–Bott functions [12], smooth functions [6], and even
arbitrary continuous functions on a topological space [7].

The problem of whether a finite graph can be realized as the Reeb graph of some function was
first studied in 2006 by Sharko [19]. Since a finite graph can be considered as a one-dimensional
CW complex, the realization problem can be studied in two ways: up to combinatorial isomorphism
of graphs or up to homeomorphism of complexes (i.e., isomorphism of graphs up to vertices of degree
two).

As to combinatorial isomorphism, not every graph can be the Reeb graph of some function:
for example, a Reeb graph cannot have loops (edges incident to one vertex). If we consider the
problem in a specific class of functions, it imposes some additional restrictions on the type of the
graph. For instance, the Reeb graph of a Morse function must have at least two vertices of degree 1.
For smooth functions with a finite number of critical points, Sharko [19, Theorem 2.1] proved a
criterion for the isomorphic realization in terms of graphs admitting so-called good orientation.
In a class of Morse–Bott functions, conditions for isomorphic realizability of a finite graph as the
Reeb graph are even more complicated [12, Theorem 1.2].

Previous results on realization of a finite graph as the Reeb graph of a function of some class
up to homeomorphism also impose some restrictions on the graph. Masumoto and Saeki [13,
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Theorem 2.1] proved that a finite graph without loops is homeomorphic to the Reeb graph of a
smooth function with a finite number of critical values on a closed surface (in fact, the graphs
are isomorphic [13, Remark 2.3]). Michalak proved that a finite graph admitting good orientation
is homeomorphic to the Reeb graph of a Morse function on a closed surface [15, Theorem 5.4,
Remark 5.5] and on a closed higher-dimensional manifold [14, Theorem 6.4].

Morse–Bott functions are an important generalization of Morse functions: unlike Morse func-
tions, they reflect the symmetries often observed both in formulas typically used in practical
calculations and in real-world phenomena and artifacts. Thus these functions are more suitable
for use in applied mathematics and in many areas of pure mathematics.

In this paper, we show that realization of a finite graph up to homeomorphism as the Reeb
graph of a Morse–Bott function does not impose any restrictions on the graph: Any finite graph G
(allowing multiple edges and loops) is homeomorphic to the Reeb graph of a Morse–Bott function
f on a smooth closed n-dimensional manifold M , for any dimension n ≥ 2 (Theorem 3.4). Note
that, as we have mentioned above, in the case of isomorphism, as well as in the case of a Morse
function, rather strong restrictions are imposed on the graph.

We further study what manifolds M and what functions f can be chosen in this construction
for a given graph G. As to the manifolds, we show that M can be chosen as a two-dimensional
surface. Specifically, the desired function exists on a given surface M , orientable or non-orientable,
if and only if for the genus g(M) it holds (Theorem 5.4)

g(M) ≥

{

b1(G) if M is orientable,

2b1(G) if M is non-orientable,

or, in terms of in the co-rank of the fundamental group (Theorem 5.6),

corank(π1(M)) ≥ b1(G), (1.1)

where b1(G) is the Betti number, called also the cycle rank, of the graph G.
As to the function f , we show that the function on the surface can be chosen with any number

k ≥ 3 of critical values, and in six special cases also with k < 3; in addition, in almost all cases
the function f can be chosen as the height function associated with a suitable immersion of the
surface M in R

3 (Theorem 5.5).
These properties of M and f are, in most cases, independent, with exceptions related to functions

with k < 3 critical values. Specifically, Theorems 5.5 summarizes the above observations in a
criterion for a given finite graph G (with possible multiple edges and loops) to be homeomorphic
to the Reeb graph of a Morse–Bott function f , with a given number k of critical values, on a
smooth closed surface M of a given genus g, orientable or non-orientable. It also gives a criterion
for the possibility to choose f as the height function associated with an immersion of M in R

3.
These observations can be partly generalized to higher dimensions in rather obvious way, though

we do not deep into details. In particular, we generalize Theorem 5.6, see (1.1), to higher dimensions
only up to existence: For any n ≥ 2, there exists an n-manifold M with corank(π1(M)) = c allowing
a desired function if and only if c ≥ b1(G); the manifold can be chosen orientable or non-orientable
(Theorem 5.7). However, unlike for surfaces, for higher dimension the co-rank of the fundamental
group and orientability do not uniquely define the manifold. Currently we work on a generalization
of Theorem 5.6 to an arbitrary dimension in a more complete way: Given a specific n-manifold
M , n ≥ 3, in our future work we will study whether a given graph G can be realized as the Reeb
graph of a Morse–Bott function on M .

The paper is organized as follows. In Section 2, we give necessary definitions and basic facts.
In Section 3, we prove the theorem on realization of a finite graph (up to homeomorphism) as the
Reeb graph of a Morse–Bott function. In Section 4, we give some additional definitions and facts
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needed for the next section. Finally, in Section 5, we study the properties of the manifold (mainly
surface) and of the function that can realize a given graph as the corresponding Reeb graph.

2. Definitions and useful facts

2.1. Graphs. Since there is no consensus in terminology related to graphs, we define here the
terms as we will use them.

We consider finite graphs that allow multiple edges (also called parallel edges or a multi-edge)
and loops (also called a self-loop or a buckle); a loop is an edge incident to only one vertex (note
that in computational geometry, this term is used differently: there, a loop is an undirected cycle).
A graph needs not to be connected. Two vertices are adjacent if they are joined by an edge. The
degree deg v of a vertex v is the number of edges incident to it (loops are counted twice); a vertex
v is an isolated vertex if deg v = 0 and a leaf if deg v = 1.

A graph is called trivial if it has only one vertex and no edges (a graph must have at least one
vertex). A complete graph with n vertices is denoted by Kn; K2 has one edge and geometrically
represents a 1-simplex or a closed interval.

A path graph Pn is a tree with n vertices with exactly two leaves (all other vertices, if any, are
of degree 2; note that we do not consider the trivial graph to be a path graph). A cycle graph
Cn is a connected graph with all its n vertices being of degree 2 (again, we do not consider the
trivial graph to be a cycle graph). Smoothing a graph is repeatedly smoothing out all vertices
of degree 2 (removing the vertex and joining the two vertices adjacent to it by an edge; this is
also called lifting) except those incident to a loop; smoothing does not change the graph up to
homeomorphism. For example, smoothing Pn, n ≥ 2, results in K2. Smoothing Cn, n ≥ 1, results
in C1; smoothing any other graph results in no vertices of degree 2 (though new loops may appear).

A graph can be considered as a one-dimensional CW complex. Two graphs are homeomorphic
if they are homeomorphic as CW complexes. Equivalently, two graphs are homeomorphic when
they become isomorphic after smoothing.

The cycle rank b1(G) of a graph G is the first Betti number of the graph considered as a
one-dimensional CW complex; in computational geometry this value is called the number of loops.

A vertex v is called cut vertex (articulation point) if the number of connected components of G\v
is greater than that of G. An (undirected) graph is biconnected if it is connected and has no cut
vertices (not the same as 2-connected). A block (also called biconnected component or, by some
authors, 2-connected component) of an (undirected) graph is a maximal biconnected subgraph.
The blocks of a graph are edge disjoint and are attached to each other at shared vertices, which
are cut vertices of the whole graph.

An orientation of an (undirected) graph G is an assignment of a direction to each of its edges;
a graph with an orientation is called a digraph. The indegree degin v of a vertex v in a digraph is
the number of edges incoming to v and the outdegree degout v of a vertex v is the number of edges
outgoing from v; obviously, deg v = degin v + degout v. A vertex v is a source if degin v = 0, a sink
if degout v = 0, and an internal vertex if it is neither a source nor a sink. Obviously, a leaf is either
a source or a sink.

By a cycle in a digraph, we mean a directed circuit that passes by each its vertex only once. A
digraph is acyclic if it has no directed cycles. A block in a digraph is a (directed) sub-graph that
is a block in the corresponding undirected graph.

Let s, t be vertices of G. A bipolar orientation, or st-orientation, of G is an orientation that
turns G into a directed acyclic graph with s being its only source and t its only sink. For an edge
e of G, an e-bipolar orientation of G is its st-orientation, where s and t are vertices incident to e;
if the orientation on e is given, we assume s to be the tail and t the head of e.
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Theorem 2.1 ([4, Theorem 4.1]). Let e be an edge of an (undirected) graph G without loops.
Then G admits an e-bipolar orientation if and only if G is biconnected.

2.2. Morse–Bott functions, Reeb graph, and the height function. We will consider only
smooth closed manifolds (smooth compact manifolds without boundary) and smooth functions.

A Morse–Bott function is a smooth function f : M → R on a manifold M , with its critical set
being a closed submanifold and with the Hessian being non-degenerate in the normal direction.
Connected components of its critical set are non-degenerate submanifolds. A Morse function is the
special case where the critical manifolds are zero-dimensional. A constant function f : M → const
on a closed manifold M is considered a Morse–Bott function; indeed, its critical set is a closed
submanifold, namely, the whole M .

The Reeb graph Rf of a continuous function f : X → R on a topological space X is the quotient
space X/∼ endowed with the quotient topology, where the equivalence relation x ∼ y holds when-
ever x and y belong to the same contour (connected component of a level set) of f . The Reeb
graph of a Morse–Bott function is a finite topological graph (one-dimensional CW complex) [3, 18].

If f is a differentiable function, then usually all its critical points are considered vertices of Rf ,
making the notion of the Reeb graph slightly different from the use of the term in the general
case: for the differential function, its (combinatorial) Reeb graph can have vertices of degree 2,
which do not make sense in the general (topological) definition of the Reeb graph. Consequently,
one can consider the Reeb graphs of differentiable functions up to isomorphism (suitable for the
special definition of the term) or up to homeomorphism (consistent with the general definition).
In this paper, we will deal with the latter case: we consider the general definition of the notion of
the Reeb graph, and thus we consider graphs up to homeomorphism.

The height function associated with an immersion i : M → R
n of a manifold M in R

n with the
coordinates (x1, . . . , xn) is the composition h = P ◦ i : M → R, where P : R

n → R is the projection
defined by P (x1, . . . , xn) = xn. This is a smooth function. There exist smooth functions, even
with finitely many critical points, on a surface that cannot be realized as a height function [10,
Theorem 1, Proposition 1]; see also Proposition 4.1.

3. A finite graph is homeomorphic to the Reeb graph of a Morse–Bott function

In this section, given a graph G, we will construct an embedding of a surface in R
3 such that

the associated height function realizes G as its Reeb graph up to homeomorphism. The process,
each step of which is explained in detail below, is outlined in Figure 1. Next, we will generalize the
result to arbitrary dimension. In the next sections, we will study the properties of the obtained
construction.

We will need some auxiliary statements.
Internal vertices of a directed graph have degree greater than one. A finite graph admits an

acyclic orientation such that all such vertices are internal:

Proposition 3.1. Let G be a finite graph (allowing multiple edges and loops) without isolated
vertices. Then there exists an orientation of G such that a vertex v is internal if and only if
deg v 6= 1.

Proof. Consider blocks of G. If a block Bi is a loop, then it has a unique vertex, which is internal.
In each non-loop block Bi 6= K2 (complete graph of two vertices) of G, choose an edge ei, choose
an ei-bipolar orientation in Bi (Theorem 2.1), and then reverse the orientation of ei. Note that all
vertices of Bi are internal.

Let now T be the subgraph of G which is the union of the K2-blocks of G. Denote connected
components of T by Tj. Each Tj is a tree, with all Tj being vertex disjoint, as well as edge disjoint
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(a) (b)

(c)

(d)

Figure 1. The process of building the desired immersion. (a) A fragment of the
initial graph G. The loose ends of the edges are connected to vertices not shown
in the picture. (b) Each edge is subdivided by two new vertices (white), and ori-
entation is introduced such that vertices v with deg v ≥ 3 are intermediate; see
Lemma 3.2. (c) The graph is embedded into R

3, with all intermediate vertices
located at one plane, all sources at another, and all sinks at a third one. Blue
circles will become the only singular circles of the constructed Morse–Bott func-
tion. (d) The vertices are replaced by small spheres with holes, according to their
degree, and the edges by tubes. This gives an immersion of a surface, with the
Reeb graph of the associated height function being homeomorphic to the original
graph G; see Theorem 3.4.

with all Bi. Make Tj an arborescence: choose a leaf of Tj as a root and direct the edges of Tj away
from the root. Note that all non-leaf vertices of Tj are internal.

The obtained orientation has the desired properties, since any leaf of Tj either belongs to a Bi

or is a leaf of G. �

Lemma 3.2. Let G be a finite graph (allowing multiple edges and loops) without isolated vertices.
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Then there exists a tripartite (or bipartite, if G is a cycle or a path) graph G′ = (V ′, E′)
homeomorphic to G, with the corresponding partition

V ′ = S ∪ T ∪ I

of the set of vertices into three independent sets

S ∪ T = { v ∈ V ′ | deg v = 1 or 2 },

I = { v ∈ V ′ | deg v ≥ 3 },
(3.1)

admitting an orientation with S 6= ∅ being all sources, T 6= ∅ all sinks, and I all intermediate
vertices.

Note that since G′ is tripartite (or bipartite), it has no loop edges. The set I is empty when G
is a cycle or a path graph.

Proof. If G is a path graph, consider G′ = K2: •→•. If G is a cycle graph, consider a digraph
G′ with two vertices and two edges between them, oriented in the same direction: •⇒•. In both
cases, G′ is bipartite.

Otherwise, smooth the graph; the resulting graph has no vertices of degree 2, though it may
have loops. Consider an orientation with all non-leaf vertices being internal (Proposition 3.1).
Subdivide each edge −−−−−−→ by two new vertices into three edges, with reverse orientation of the
middle one: →◦←◦→. Since G′ also contains vertices of degree other than 2, it is tripartite; see
Figure 1 (a), (b). �

Lemma 3.3. Let f : M → R be a Morse–Bott function with k critical values. Then the function

g : M ×N
p
→M

f
→ R,

where p is the projection to the first factor, is also a Morse–Bott function with k critical values,
and their Reeb graphs are isomorphic, Rf = Rg.

Indeed, g−1(y) = f−1(y)×N , so Rg = Rf .
Now we can prove our main result:

Theorem 3.4. A finite graph (allowing multiple edges and loops) is homeomorphic to the Reeb
graph of a Morse–Bott function on a smooth closed n-manifold, for any n ≥ 2.

Proof. For simplicity, first assume n = 2.
Isolated vertices correspond to constant functions on connected components of the surface; we

can assume now that the graph G has no isolated vertices. We can also assume that G has an
orientation with the properties given in Lemma 3.2; see notation for I, S, T there.

Consider an immersion of G in R
3 with coordinates (x, y, z) such that I ⊂ { z = 0 }, S ⊂ { z =

−1 }, T ⊂ { z = +1 }, and edges are straight lines; see Figure 1 (c). Note that the corresponding
height function increases along the direction of the edges. We will build an immersion of a surface
roughly resembling a thick version of this graph, with G being the Reeb graph of the corresponding
height function.

Namely, represent the vertices v of the immersed graph by spheres with boundary, embedded
as shown in Figure 2 (called atoms in [2]), with degin v boundary components at the bottom and
degout v boundary components at the top, and connect them by tubes along the edges of the graph;
see Figure 1 (d). The height function is monotonous along the tubes.

This gives an immersion of a closed surface M2 in R
3 such that the associated height function

f : M2 → R is of Morse–Bott type, and its Reeb graph coincides with G up to homeomorphism:
Rf
∼= G.
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(a)

� �

(b)

� �

(c)

� �

(d)

� �

Figure 2. Examples of embedded surface fragments, surfaces with different num-
ber of holes at the top and bottom, used to construct the surface in Figure 1 (d).
Following the pattern shown in (c) and (d), one can construct such fragments
with any number of additional holes at the bottom and at the top. On all such
fragments, except (b), the associated height function is of Morse type, and on (b)
it is of Morse–Bott type with a singular circle. Singularities and singular levels
are shown in blue.

Now, for any n ≥ 3, consider Mn = M2 × Sn−2 and the composition

f̃ : M2 × Sn−2 p
→M2 f

→ R,

where p is the projection to the first factor. By Lemma 3.3, the constructed function f̃ is of
Morse–Bott type and Rf̃ = Rf

∼= G. �

In the next sections, we will consider characteristics of the surface constructed in Theorem 3.4
and properties of the corresponding Morse–Bott function.

4. Further definitions and useful facts

4.1. Morse–Bott functions with two critical values. This case is considered in detail in a
separate paper [8].

Proposition 4.1 ([8]). Let G be a finite graph (with possible multiple edges and loops) and M
a connected closed surface. Then there exists a Morse–Bott function f : M → R with exactly two
critical values and the Reeb graph Rf homeomorphic to G if and only if

(i) G is a path graph and M is S2, RP 2, or K2 (the Klein bottle), or
(ii) G is a cycle graph and M is T 2 or K2.

The function f can be chosen as the height function associated with an immersion of M in R
3 if

and only if G is a cycle graph or M is S2.

4.2. Co-rank of the fundamental group. The co-rank of a finitely generated group G is the
maximum rank of a free homomorphic image of G. For a path-connected topological space X ,
consider the fundamental group π1(X). If it is finitely generated, as in the case of compact
manifolds, then corankπ1(X) is finite. Obviously, corankπ1(X) ≤ b1(X), the first Betti number.
For a surface M of genus g, it holds

corank(π1(M)) =

{

g if M is orientable [11],

b g

2
c otherwise [5, Eq. (4.1)].

(4.1)

For connected smooth closed manifolds M and N , it holds [5, Theorem 3.1]:

corank(π1(M ×N)) = max{ corank(π1(M), corank(π1(N) }. (4.2)
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Theorem 4.2 ([7, Theorem 3.1, Proposition 3.9]). Let X be a connected locally path-connected
topological space and f : X → R a continuous function whose Reeb graph Rf is a finite topological
graph. Then for the cycle rank b1(Rf ), it holds

b1(Rf ) ≤ corank(π1(X)).

For connected smooth closed manifolds, this inequality is tight.

5. Characteristics of the manifold and the function

In this section, we will examine the proof of Theorem 3.4 and its underlying Lemma 3.2 in
more detail and, specifically, study whether the surface therein can be chosen orientable or non-
orientable and having a given genus, whether the function can be chosen with a given number of
critical values, and whether it can be chosen as the height function associated with an immersion
of the surface in R

3.
Accordingly, we give here extended versions of Lemma 3.2 and later Theorem 3.4.

Lemma 5.1. Let n, m ∈ N. In Lemma 3.2, the digraph G′ = (V ′, E′) homeomorphic to the given
graph G can be chosen such that

(i) |V ′| ≥ n,
(ii) G′ has at least m edges with endpoints being a source and a sink.

Denote B = { v ∈ V ′ | deg vi = 2 }. In addition to having the properties (i) and (ii),

(iii) G′ can be chosen such that the set B can be partitioned into pairs of adjacent vertices
{ si, ti }, where si is a source and ti a sink;

(iv) unless G is a tree or a cycle graph, G′ can be chosen such that the set B \ v0 can be
partitioned into pairs as in (iii), for some vertex v0 ∈ B belonging to an undirected cycle
in G′.

Obviously, (iii) and (iv) describe two different options of the choice of G′.

Proof. (i), (ii) After constructing the graph G′ as in Lemma 3.2, we can subdivide an edge by pairs
of adjacent vertices of degree 2, obtaining a chain of enough edges with alternating orientation:
→◦←◦→◦←◦→, etc.

(iii) The construction in the proof of Lemma 3.2, with the above addition, already has this
property, since we insert the vertices of degree 2 in pairs.

(iv) Let now G, and therefore G′ constructed as above, has a cycle c, but is not a cycle graph.
Then it has a vertex v with deg v ≥ 3 belonging to the cycle c; in particular, degin v ≥ 1 and
degout v ≥ 1. Assume, without loss of generality, degin v ≥ 2:

�
	

�

··· −−−−−→

↗
v →···

Subdivide the edge from the cycle c incoming to v with a vertex v0, reversing the orientation of
the new edge incident to v: �

	
�

···→ v0 ←

↗
v →···

The new vertex v0 with deg v0 = 2 belongs to the cycle c, and the obtained graph still satisfies the
conditions (3.1); in particular, the vertex v, deg v ≥ 3, is still internal and v0, deg v0 = 2, is a sink
(or a source).

Note that the condition for G not to be a tree or a cycle graph is justified by the fact that a
tree has no cycles to which v0 would belong, and for a cycle graph satisfying (3.1), |B| is even. �
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Lemma 5.2. The surface constructed in the proof of Theorem 3.4 is orientable if the graph used
there is obtained by a variant of Lemma 3.2 given in Lemma 5.1 (iii), and is non-orientable in the
case of Lemma 5.1 (iv).

The latter case is applicable only if G is not a tree or a cycle graph.

Proof. As Figure 3 shows, a pair of circle singularities (corresponding to a pair of adjacent ver-
tices of degree 2 in the graph) can be transformed by a smooth sequence of immersions into an
embedding. Thus, given that all vertices of the graph can be grouped in pairs (Lemma 5.1 (iii)),
the surface in the proof of Theorem 3.4 can be transformed into an embedding of the surface in
R

3, constructed by connecting the spheres with holes (embedded at a distance from each other) by
tubes (also embedded, in a non-intersecting way). Therefore, the surface is orientable. Note that
the Reeb graph of the height function associated with such embedding is not homeomorphic to the
given graph G, as can be seen on Figure 3 (c); this is why we did not use such a construction in
the proof of Theorem 3.4.

In contrast, if after reducing all pairs of adjacent critical circles to handles one critical circle is
left (Lemma 5.1 (iii)), provided that this circle is not homologically trivial, we obtain an inverted
handle attached to otherwise orientable surface; see Figure 4. Thus, the whole surface is non-
orientable. �

Below, we will need to add to the construction from the proof of Theorem 3.4 more surface
fragments in addition to those shown in Figure 2. They will not necessarily be spheres with holes
and not even be necessarily orientable.

Proposition 5.3. Given a finite connected graph G = (V, E), where V = V1∪V2, with V1∩V2 = ∅,
and a closed surface

M =
(

⋃

v∈V1

Av

)

∪
(

⋃

v∈V2

Bv

)

∪
(

⋃

e∈E

τe

)

, (5.1)

where all Av and Bv are mutually disjoint surfaces with deg v boundary components, Av being
orientable and Bv non-orientable; all τe are mutually disjoint closed tubes; and the “vertices” Av,
Bv are interconnected by the “edges” τe according to the graph G:

Av

Bv

}

∩ τe =

{

one or two S1 if e is incident to v,

∅ otherwise

(two S1 above correspond to the case of a loop edge).
Then for the genus g(M) of M , it holds

g(M) =

{

b1(G) +
∑

v∈V
g(Av) if M is orientable,

2(b1(G) +
∑

v∈V1
g(Av)) +

∑

v∈V2
g(Bv) otherwise.

(5.2)

In the orientable case, obviously, V = V1.

Proof. Since the pairwise intersections of the parts of the decomposition (5.1) are at most one-
dimensional and the surface is locally compact, its Euler characteristic is additive:

χ(M) =
∑

v∈V1

χ(Av) +
∑

v∈V2

χ(Bv) +
∑

e

χ(τe).

For the orientable surfaces Av with deg v boundary components, χ(Av) = 2− 2g(Av)− deg v, and
for non-orientable Bv, it becomes χ(Bv) = 2− g(Bv)− deg v. Since χ(τe) = 0, we obtain

χ(M) =
∑

v

(2− deg v)− 2
∑

v∈V1

g(Av)−
∑

v∈V2

g(Bv).
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(a)

� �

(b)

�

�

�

�

�

�

�

� �

(c)

Figure 3. Transformation (a smooth family of immersions) of an immersion of
the surface near a pair of adjacent critical circles into an embedding. (a) Tubes
with two adjacent critical circles, connected to the rest of the surface (symbolically
shown as a sphere) as explained in the proof of Theorem 3.4. Stretching the tubes
along the arrows, we obtain (b), which is an embedding. Pulling one tube from the
other, we obtain (c); pulling them further gives a usual handle of the surface (not
shown). Note that the ends of the handle are connected from the same (outer)
side of the surface.

� �

(a) (b)

� �

(c)

Figure 4. Similarly to Figure 3, transformation of a neighborhood of a single
critical circle into an inverted handle. (a) Tubes with one critical circle similar
to the standard immersion of the Klein bottle. (b) By pushing one of the tubes
into the surface, we obtain a pair of two critical circles. (c) As we know from
Figure 3, this is equivalent to a handle. However, this time the ends of the handle
are connected from the opposite (outer and inner) sides of the surface, thus the
whole surface is not orientable.

On the other hand, the cycle rank of the graph b1(G) = |E| − |V | + 1, and by the handshaking
lemma, 2|E| =

∑

v deg v, so 2b1(G) =
∑

v(deg v − 2) + 2. This gives

χ(M) = 2− 2b1(G)− 2
∑

v∈V1

g(Av)−
∑

v∈V2

g(Bv).
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For an orientable surface, V = V1 and χ(M) = 2 − 2g(M), while for a non-orientable surface
χ(M) = 2− g, which gives (5.2). �

The following theorem should be understood as two different statements, one for the orientable
and one for the non-orientable case.

Theorem 5.4. Let G be a finite connected graph (allowing multiple edges and loop edges), and
g, k ∈ Z, k ≥ 3.

Then there exists a smooth closed orientable (non-orientable) surface M of genus g and a Morse–
Bott function f : M → R with k critical values such that its Reeb graph Rf is homeomorphic to G
if and only if G is not trivial and

g ≥

{

b1(G) (orientable case),

max{ 2b1(G), 1 } (non-orientable case).
(5.3)

The function can be chosen as the height function associated with an immersion of M in R
3.

Proof. In one direction, suppose that the surface M (connected since G is connected) and function
f in question exist. Then the Reeb graph of f is non-trivial since k ≥ 3 implies that f is not
constant. The inequality (5.3) is given by Theorem 4.2 with (4.1). Thus we only need to prove the
theorem in the other direction, i.e., to prove that, provided that the graph G is not trivial, (5.3)
implies the existence of a desired surface and immersion.

In the proof of Theorem 3.4, we built a closed surface M by first embedding G in R
3 with the

coordinates (x, y, z) in a special way, then replacing its vertices with fragments of the surface such
as those shown in Figure 2, and replacing its edges with tubes containing no isolated critical points
of the associated height function. In particular, the desired function f was the height function
associated with an immersion of the constructed surface.

Without loss of generality, we can assume G = (V, E) to have the properties given by Lemmas 3.2
and 5.1.

Note that if using the procedure from the proof of Theorem 3.4, we construct the desired
function and embedding for some number of critical values k0, then the theorem holds for all
values of k > k0. Indeed, by Lemma 5.1 (i), we can assume G to have enough vertices (most of
them probably of degree 2: for example, a path graph could be represented not only as | but as
something like \/\/\/\/\ as well). By a slight perturbation of their positions in the embedding of G,
we can obtain an embedding of M with k critical values of the associated height function, without
affecting other relevant properties of the surface and the embedding.

Similarly, provided that k0 ≥ 3, if the obtained surface has a genus g0, then the theorem holds
for all values of g ≥ g0. Indeed, by Lemma 5.1 (ii), we can assume G to have enough edges ei

connecting a source with a sink that were not affected by the above perturbation of the embedding
of G, i.e., each ei connects a vertex from { z = +1 } with a vertex from { z = −1 }. Moreover, we
can assume that the above perturbation moved vertices from { z = +1 } only down and those from
{ z = −1 } only up; thus, since k0 ≥ 3, there is a vertex from { z = c } with c ∈ (−1, 1). Subdivide
some of ei by a vertex vi where they cross { z = c }. Construct the surface M as before, using
for the new vertices vi of degree 2 the fragments shown in Figure 5 (orientable case) or Figure 6
(non-orientable case); see Figure 7 for more details. By Proposition 5.3, this increases the genus
of M , without affecting other relevant properties.

Therefore, we only need to construct, using the procedure from the proof of Theorem 3.4, the
required function, via a suitable immersion, for some k0 ≤ 3 and g given by the right-hand side
of (5.3).

For the orientable case, the original construction given in Theorem 3.4 already has all the
desired properties. Indeed, the construction given in Lemma 3.2 corresponds to the option (iii)
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(a)

�

�

(b)

Figure 5. An embedding or a surface fragment used to construct the surface M
in addition to those shown in Figure 2 (orientable case). In contrast to Figure 2,
this fragment has nonzero genus, while the Reeb graph of the associated height
function f has zero cycle rank; therefore, this fragment increases the genus of
M by 1, without increasing b1(Rf ). (b) Evolution of the level sets of the height
function f . The thin dashed lines show how the next (from bottom to top) level
is obtained from the current one: for example, self-gluing the second level in two
places gives the third level. These level sets are shown in a different way in
Figure 7 (a).

(a)

�

(b)

Figure 6. Same as Figure 5, non-orientable case: the Boy surface—an immersion
of RP 2 in R

3. (a) Symbolic visual representation (only symbolizing that “some-
thing happened there”); in more detail the immersion is shown in [2, Fig. 2.21 (a)].
(b) Evolution of the level sets. These level sets are shown in a different way in
Figure 7 (c). Figure adapted from [2, Example 5, page 62].

of Lemma 5.1; then Lemma 5.2 gives that M is orientable. Thus, since all surface fragments
representing the vertices of the graph were spheres with boundary (of genus zero), Proposition 5.3
gives the genus g(M) = b1(G). By construction, the associated height function has at most three
critical values.

In the rest of the proof, we consider the non-orientable case. Unless G is a tree or a cycle graph,
the construction from Theorem 3.4 with Lemma 5.1 (iv) has the desired properties, given, again,
by Lemma 5.2 and Proposition 5.3.
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(a)

� �

(b)

� �

(c)

� �

Figure 7. Morse functions on three surfaces with all critical points of index 1
lying on the same contour (blue). The surfaces are shown as a square with the
sides identified according to the arrows; thin arrows indicate the gradient direction.
(a) Torus T 2 shown in Figure 5. (b) For completeness, the Klein bottle K2 (note
the opposite orientation of the bottom side of the square). We do not use this
construction in this paper, since it would add 2 to the genus if used in a similar
way as (a) and (c). (c) The projective plane RP 2 shown in Figure 6.

For G being a tree or a cycle graph, the right-hand side of (5.3) gives g = 1. For a tree, we first
construct the embedding of the graph G as in the orientable case. As above, we can assume that
there is an edge between { z = −1 } and { z = +1 } (substituting some edge | with \/\ if needed).
Subdivide this edge with a vertex of degree 2, for which, when constructing the surface, use the
fragment from Figure 6. The resulting non-orientable surface has genus one by Proposition 5.3.
If the graph already had vertices at { z 6= ±1 }, then the new vertex is placed at the same z. By
construction, we obtain three critical levels.

Finally, for a cycle graph, we construct a torus as in the orientable case but using the immersion
as in Figure 8 (a), and twist one of the tubes as in Figure 8 (b), obtaining an immersion of the
Klein bottle K2 with the desired properties. �

For the sake of completeness, Theorem 5.4 and Proposition 4.1 can be combined in a criterion
for a given graph G to be realizable on a given surface M as the Reeb graph of a function with
a given number k of critical values (again, as a combination of two statements, for the orientable
and for the non-orientable case):

Theorem 5.5. Let G be a finite connected graph (allowing multiple edges and loop edges), and
g, k ∈ Z.

Then there exists a smooth closed orientable (non-orientable) surface M of genus g and a Morse–
Bott function f : M → R with k critical values such that its Reeb graph Rf is homeomorphic to G
if and only if

g ≥

{

b1(G) (orientable case)

max{ 2b1(G), 1 } (non-orientable case)

and k = 1 if G is trivial, otherwise

k ≥

{

2 if the conditions (5.5) below hold,

3 otherwise,
(5.4)
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(a) (b)

Figure 8. (a) An immersion i of a torus T 2 in R
3 with coordinates (x, y, z).

The rectangles represent horizontal planes { z = const } at different height, with
the intersections (8-shaped) with i(T 2) shown. In blue color, the images of the
singular circles (minimum and maximum) of the associated Morse–Bott height
function f(x, y, z) = z are shown, along with a nearby level set each. Arrows show
the evolution of an orientation on the contours; the orientation is consistent. (b) A
similar immersion of the Klein bottle K2. The twist (left) results in inconsistent
orientation, as the evolution of the arrows, seen clock-wises starting from the top,
shows; therefore, the obtained circle bundle over S1 is non-orientable, i.e., K2.
Figure and parts of its description are borrowed from [8].

the conditions for k = 2 being:

g =







































0, M = S2 (orientable case)

1, M = RP 2 (non-orientable case)

2, M = K2 (non-orientable case)











and G is a path graph, or

1, M = T 2 (orientable case)

2, M = K2 (non-orientable case)

}

and G is a cycle graph.

(5.5)

The function f can be chosen as the height function associated with an immersion of M in R
3

if and only if G is not trivial and, in the non-orientable case, either k 6= 2 or G is a cycle graph
(in particular, M = K2, i.e., g = 2).

Theorem 5.5 can be formulated in terms of a given surface M instead of a given genus g; this
slightly simplifies the expression (5.3) by removing the need for the max{ · }. Next, (4.1) allows
further simplifying the expression (5.3) by considering the co-rank of the fundamental group instead
of genus; this may potentially allow for generalizations to higher dimensions. In the following form
of the theorem, for simplicity we omit the part about the number k of critical values, which can
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be borrowed exactly from Theorem 5.5, substituting in (5.4) a reference to (5.3) with a reference
to (5.6):

Theorem 5.6. Let G be a finite graph (with possible multiple edges and loop edges) and M a
smooth closed surface.

Then there exists a Morse–Bott function f : M → R such that its Reeb graph Rf is homeomor-
phic to G if and only if

corank(π1(M)) ≥ b1(G). (5.6)

The function f can be chosen as the height function associated with an immersion of M in R
3 if

and only if G has no isolated vertices.

Theorem 5.5 can be easily generalized to higher dimensionality. Omitting less important details
such as the number of critical values and the possibility for the function to be the height function
associated with an immersion, we can generalize this theorem as follows:

Theorem 5.7. Let G be a finite connected graph (allowing multiple edges and loop edges) and
n, c ∈ Z, n ≥ 2.

Then there exists a smooth closed orientable (non-orientable) n-manifold M with

corank(π1(M)) = c

and a Morse–Bott function f : M → R such that its Reeb graph Rf is homeomorphic to G if and
only if

c ≥ b1(G).

Proof. In one direction, given that such a manifold M and function f exist, Theorem 4.2 gives
c ≥ b1(G).

In the other direction, given c ≥ b1(G) and k ≥ 2, we need to construct a manifold Mn and a
Morse–Bott function f : M → R on it with corank(π1(M

n)) = c and Rf
∼= G.

For n = 2, the proof is given in Theorem 5.5 with g = c (orientable case) or g = 2c + 1
(non-orientable case).

For n = 3 and c = 0, consider M = S3, a sphere. Since b1(G) = 0, the graph is a tree. By [14,
Theorem 6.4], on S3 there exists a Morse function f : S3 → R such that Rf

∼= G.
Let now n ≥ 3 with c ≥ 1 if n = 3. Consider M = M2 × Sn−2, with the surface M2 being

orientable of genus g = c in the orientable case, and non-orientable of genus g = 2c +1 in the non-
orientable case; in both cases, corank(π1(M

2)) = c. Since either corank(π1(S
n−2)) = 0 (for n ≥ 4)

or corank(π1(M
2)) ≥ 1 (for n = 3), Equation (4.2) gives c = corank(π1(M)) = corank(π1(M

2).

Since g ≥ b1(G), by Theorem 5.5, there is a Morse–Bott function f̃ : M2 → R such that Rf̃ is
homeomorphic to G. By Lemma 3.3, the composition

f : M2 × S1 p
−→M2 f̃

−→ R,

where p is the projection to the first factor, is a Morse–Bott function, with Rf = Rf̃
∼= G.

In the non-orientable case, choose the surface M2 to be non-orientable of genus g = 2c+1; then
corank(π1(M

2) = c. As above, since g ≥ 2b1(G)+1, by Theorem 5.5 and Lemma 3.3, we construct
a Morse–Bott function f : M2 × S1 → R with k critical values and Rf = Rf̃

∼= G. �

Another way of studying the higher-dimensional case is to consider the same construction we
used in the proof of Theorem 3.4, but with n-dimensional spheres with holes (Sn \

⋃

Bn
i ) instead

of 2-dimensional ones shown in Figure 2, represening the vertices of the graph, similarly connected
by n-dimensional “handles” (Sn−1 × R) representing the edges of the graph. Indeed, in Figure 2,
we construct an embedding of a sphere with holes as an evolution of a number of Sn−1 (in our
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case, n = 2) along the height dimension (say, moving them from bottom up), merging and splitting
them all at the same (critical) height, see Figure 2 (a), (c), (d), or reversing the direction of the
“movement” with suitable resizing, see Figure 2 (b). The same can be done for n ≥ 2, similarly
obtaining roughly a thick version of the graph. We leave the study of this construction to the
future work.
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Klein bottle, Figure 8. We also thank the anonymous reviewer for valuable suggestions.
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