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A Test for Compactness of a Foliation

I. A. Mel'nikova UDC 514

ABSTRACT. We investigate foliations on smooth manifolds that are determined by a closed 1-form with Morse
singularities. We introduce the notion of the degree of compactness and prove a test for compactness.

In the present paper we investigate foliations on smooth manifolds that are determined by a closed
1-form with Morse singularities. The problem of investigating the topological structure of level surfaces
for such a form was posed by S. P. Novikov in [1]. This problem was treated in [2-5]. The present paper is
devoted to the compactness problem for level surfaces. We introduce the notion of degree of compactness
and prove a test for compactness expressed in the terms of the degree.

In §1 we give the necessary definitions and define the degree of compactness. The central result of the
paper, i.e., the test for compactness of a foliation, is proved in §2. In §3 we present some consequences: a
relation between the degree of compactness and the degree of irrationality of the form, and a more detailed
investigation of the two-dimensional case.

The present paper is a natural continuation of [6].

§1. Preliminary definitions

Consider a smooth compact n-dimensional manifold M and a closed 1-form w on M with nondegen-
erate isolated singularities.

Definition 1 [7]. A point p € M is said to be a regular singularity of the differential form w if in a
neighborhood O(p) we have w = df, where f is a Morse function with a singularity at p. There exist,

therefore, coordinates z!,...,z™ such that in this neighborhood we have
k ] n
w= Zz;dz' - Z z;dz’.
i=1 i=k+1

The number min(k, n — k) is called the indez of the singular point.

On the set M — Singw the form w determines a foliation F,, of codimension 1. If the index of the
singular point P is equal to zero, then there exists a foliation of a neighborhood of P into spheres. If
ind P = 1, then there exists a fiber that becomes locally arcwise connected after adding the singular point
P. This fiber is called the canonical fiber. For ind P > 1 all the fibers in the neighborhood of P are
locally arcwise connected.

The foliation F,, contains fibers of three kinds [7]:

1) compact fibers admitting a neighborhood consisting of diffeomorphic fibers;

2) conic fibers, i. e., fibers that may be made locally arcwise connected in a neighborhood of a singular
point by adding this singular point to the fiber;

3) all the other noncompact fibers.

Below we assume that the singular point P belongs to the fiber, and thus all the fibers are arcwise
connected.
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Definition 2. Consider a compact fiber v of F,, and the mapping v — [y] € Hp—1(M). Then the
images of all compact fibers are spanned by a subgroup in H,_;(M). We denote this subgroup by H,
and call rk H,, the degree of compactness of the foliation F,,.

Since H, € Hp-1(M), we obtain 0 <tk H,, < Bn-1, where 8,—1 =tk H,_1(M). If all fibers of F,, are
noncompact, then rk H,, = 0. The converse is false: some compact fibers may prove to be homologous to
zero. Moreover, there exist compact foliations with rk H, = 0. To obtain such a foliation, it is sufficient
to consider a manifold M such that Hn_;(M) = 0. The foliation associated with any closed form is
obviously compact, and all the fibers are homologous to zero.

Consider the group Hn_i(M) and the intersection map

(o2 Hn._l(M) x H _1(M) b d Hn_z(M)

for homology classes, which is defined in the following way [8]. Let z, y € H,—1(M), and let D denote
Poincaré duality; then zoy = Dz Ny. If the homology classes ¢ and y are realized by the submanifolds
X and Y, then zoy is the homology class of X NY . The intersection is skew-symmetric: zoy = —yoz.

Definition 3. Consider the subgroup H C Hp_;1(M) such that for all z,y € H we have zoy =0.
We call H the isotropic subgroup with respect to the intersection of cycles. An isotropic subgroup H is
called mazimal, if for all z € H,z #0 and y ¢ H we have zoy # 0.

The subgroup H,, of compact fibers obviously is an isotropic subgroup in H,_;(M).
Denote by M, the set obtained by eliminating from M all the maximal neighborhoods consisting of
diffeomonphic compact fibers and 2Il the fibers that may be compactified by adding singular points.
§2. The main theorem

Let us establish the validity of the following test.

Theorem. If the subgroup H,, spanning all the compact fibers is a maximal isotropic subgroup of the
homology group Hp—1(M), then M, = @.

Proof. Suppose the subgroup H, has maximal rank, and let H, = {[1],-.., [Y~]), where 7, are
fibers of F,. Cutting M along the fibers 71, ..., yn, Wwe obtair a manifold M’ with boundary.

Let ¢: M' —» M be the gluing map, and let i:: M’ — M’ be the boundary inclusion mapping.

Lemma 1. If H, is a maximal isotropic subgroup, then the mapping i.: Hp—1(0M') — Hp_i(M")
is surjective.

Proof. The gluing map ¢: M" — M induces the mapping of pairs ¢: (M',0M') — (M,|J7:). Let
us set @plamr = ) and consider the commutative diagram

Haoy(OM') —2— H,_y(M")

[ |+

HoosllUs) —— Ho o).

We claim that 1) the mapping j is injective, 2) the mapping 1. is surjective, 3) kery, C imi,.
1) Since the fibers +; do not intersect, v; N vy; = &, the Mayer-Vietoris exact sequence gives

Ho1(Uvi) = ©Hn-1(7i).

By assumption, the cycles [v,] are independent in M, and, therefore,

OHn-1(1:) = (l,...,[]) = Ha
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and the mapping j: H, — H,-1(M) is an inclusion.

2) Since @(OM') =, it follows that the mapping ;. is surjective.

3) If p.2' =0, then ¢(2') = S, where S C M. After the cutting process S is bounded by 2’ and
the v, that satisfy SN+v; # @. Thus, 2’ € imi,.

Consider 2’ € Ho—1(M'), then 2’NOM' = @; hence, ¢(z')Ny, = @,i=1,...,N,andso g.2'0oy, =0,
i=1,..., N. By assumption H, is maximal and, therefore, p.2' € H,,. Since j: H, — Hn-1(M) is an
inclusion, there exists an element z € j~}(y.2'). The mapping ;. is surjective, and hence the preimage
of 2 in Hn_1(dM') exists: 29 = ¢;1(z). The commutativity of the diagram then implies

Priazo = Jp1a20 = j(2) = @.2'.
Thus, 2z’ — i,20 € kerp,. Due to the reasoning above, kerp. C imi,; therefore, 2z’ — i.20 € imi. and
z' € imi,. It follows then that i, is surjective. Lemma 1 is proved. O

To the short exact sequence
0—Z - Hoy(OM') = Hy((M') — 0,

where Z = keri,, let us apply the functor ®R, which is covariant and right exact [8]. We obtain the
exact sequence

ZOR — Hoa 1 (OMYQR 2 H, 1 (M')QR — 0,

where the mapping ig is surjective as well.

According to the universal coefficients theorem, we have Hy(M,R) = Hx(M) @ R. Thus, Lemma 1
implies that for homology with coefficients in R the mapping is: Hp—1(0M',R) —» Hp_i(M',R) is
surjective as well.

Lemma 2. Let i: OM' — M be the inclusion mapping. If the mapping
ie: Hae1(OM',R) = Hoy(M',R)
is surjective, then the mapping
j: Hy(dM',R) — H,(M',R)
is surjective as well.

Proof. Consider the commutative diagram (all the homology groups have coefficients in R):

Hy(M',0M') —2—  Ho(dM")

l D l D (1)
H™(M',R) —=— H"-1(3M',R).
Here D is Poincaré duality for manifolds with boundary. By assumption, the map i.: Hp_1(OM',R) —
H,_i(M',R) is surjective. Consider the short exact sequence

0—Z — Hoy(6M',R) 2 H,_1(M',R) - 0,
where Z = keri.. Since
H"'l(aM' yR)= Hom(H,.-l(aM' , R), R) and H"“’(M' ,R)= Hom(H,,_l(M' , R), R),

to this sequence we may apply the functor Hom( ,R), which is contravariant and right exact [8]. We
obtain the following exact sequence:

Hom(Z, R) « Hom(Hp-1(8M', R), R) <= Hom(H,-1(M',R),R) « 0,

and i, is therefore injective. Then in diagram (1), we have kerd = 0.
Consider the exact homology sequence of the pair (M', dM’)

— H(OM") L Hy(M') 5 Hy(M', 8M") 5 Ho(dM') — .

Since kerd = im! = 0, we obtain ker! = H;(M'). Since imj = ker! = H;(M'), the mapping j is
surjective. Lemma 2 is proved. O
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Let us consider the mapping ¢: M' — M, and set w’ = ¢*w, which will be the restriction of w to

M'. For all 2/ € Hi(M') we have
/w':/ ga*w:/ w.
2 z Puz

By Lemma 2, 2' € H,(0M'), and therefore ¢(2') € | J7vi. Then f¢(z') w=0. Thus,

/ W'=0 Vi € Hy(M'),

z

and, since w is a Morse form on M’, the foliation is compact. It follows then that the foliation on M is
also compact. The theorem is proved. O

Remark. The converseis not valid for dimensions greater than 2. Thus, there exists a compact foliation
on §? x §! with all the fibers homologous to zero, i.e., the subgroup H,, is not a maximal subgroup.

§3. Some corollaries

The rank of a maximal isotropic subgroup in H,_;(M) is an attribute of the manifold M ; it does not
depend on any foliation. Denote this number by hg. In the two-dimensional case, the rank of a maximal
isotropic subgroup is equal to the number of handles of the manifold, ho(M, 92) = g. The following criterion
has been established in [6]: a foliation F,, on M is compact iff rk H, = g. The compactness degree
of the foliation associated with a Morse form is related to the degree of irrationality of the form w. For
example, on M 92 the inequality dirrw +rk H,, < 2¢ — 1 is valid.

Corollary 1. Let w be a closed 1-form with Morse singularities determining on a compact manifold
M™ the foliation F,. If H,, is a maximal isotropic subgroup, then dirrw < rk H,,,.

Proof. Indeed, if H, is a maximal isotropic subgroup, i.e., tk H, = ho(M), then the proof of the
theorem above implies that the 1-form w may have nontrivial integrals only over cycles transversal to the
fibers v;. Therefore, dirrw <tk H, — 1 = ho(M) — 1. Corollary 1 is proved. O

Corollary 2. If dirrw > g, then the foliation of a Morse form w on M? has a noncompact fiber.

Indeed, by the compactness criterion for a foliation on M: , if F, is compact, then H, is maximal.
The previous statement then implies that dirrw < ho(M?) — 1. Corollary 2 is proved.
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