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Abstract

We study a foliation defined by a possibly singular smooth closed one-form on
a connected smooth closed orientable manifold. We prove two bounds on the
total number of homologically independent compact leaves and of connected
components of the union of all locally dense leaves, which we call minimal
components. In particular, we generalize the notion of minimal components,
previously used in the context of Morse form foliations, to general foliations.
Finally, we give a condition for the form foliation to have only closed leaves
(closed in the complement of the singular set).
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1. Introduction

Let ω be a smooth closed one-form on a connected smooth closed orientable
manifold M and Singω the set of its singularities. This form defines on M \
Singω a codimension-one foliation Fω. This type of foliations is important in
applications to physics, e.g., in supergravity theory [1, 2].

Smooth closed one-forms define an important class of foliations: foliations
without holonomy; moreover, any codimension-one foliation without holonomy
is topologically equivalent to a foliation defined by a smooth closed one-form [3].
A subset of smooth closed one-forms, Morse forms (locally the differential of a
Morse function), is well-studied.

A leaf of a codimension-one foliation is either proper (locally closed, hence it
is a regular submanifold), locally dense (its closure has non-empty interior), or
exceptional (its closure is known to be transversally homeomorphic to a Cantor
set). In particular, a compact leaf is proper.

The number of different leaves of each kind, usually up to some equivalence
relation, or objects related with such equivalence classes, is an important topo-
logical invariant of a foliation. In this paper, we will study the number of locally
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dense and compact leaves of a closed one-form foliation up to some topological
and homological equivalence, respectively.

One construction used (not in this paper) to count equivalence classes of
leaves of a foliation (defined on the whole arbitrary manifold M) is minimal sets:
minimal non-empty closed saturated (i.e., consisting of whole leaves) subsets of
M . The number of exceptional minimal sets of a codimension-one foliation on a
compact manifold is finite; moreover, for arbitrary k ∈ N there exists a foliation
on a compact manifold with k exceptional minimal sets [4, Theorem 4.1.3]. This
number is finite even for a C0-foliation on a closed manifold [5, Lemma 2.13].

However, each compact leaf is a minimal set in itself, the union of all compact
leaves of a closed one-form foliation being open, so if a foliation has a compact
leaf, then the number of its minimal sets is infinite. It is even worse for locally
dense leaves: a minimal set contains a locally dense leaf L only if L = M . So
minimal sets are not a suitable tool for studying compact and locally dense
leaves.

Another construction is connected components of the union of leaves of each
type. For a Morse form foliation Fω, connected components of the union of
locally dense leaves are called minimal components [6] and connected components
of the union of compact leaves are called maximal components [7], or in the case
of 2-surfaces, periodic components [8].

A Morse form foliation contains only closed (in M \Singω) and locally dense
leaves [6, 9]. The number m(ω) of its minimal components, the number M(ω)
of its maximal components, and the number of its singularities are finite [7, 10];
moreover (Corollary 2.2):

2m(ω) +M(ω) ≤ b1(M) + |Singω| − 1,

m(ω) +M(ω) ≤ b′1(M) + |Singω| − 1,

where b1(M) is the Betti number and b′1(M) is the co-rank of the fundamental
group π1(M); the second inequality is exact for each M . The number of closed
(in M \ Singω) but non-compact leaves of a Morse form foliation is also finite.
However, whereas we will show below that m(ω) can be generalized to arbitrary
smooth closed one-form, these inequalities cannot be generalized because both
Singω and M(ω) can generally be infinite, as in Example 3.1 below.

For the study of compact leaves, homology theory provides more useful tools:
obviously, for a form on a compact manifold, the number c(ω) of homologically
independent compact leaves of Fω is finite: c(ω) ≤ b1(M), the first Betti number.
For a Morse form foliation, the number c(ω) of homologically independent
compact leaves and the number m(ω) of minimal components are related:

2m(ω) + c(ω) ≤ b1(M), [7, Theorem 3.1]

m(ω) + c(ω) ≤ b′1(M). [10, Theorem 3]

In this paper, we generalize the notion of a minimal component to arbitrary
foliations and show that these two bounds hold for arbitrary smooth closed
one-forms.
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The paper is organized as follows. In Section 2, we give necessary definitions
and known facts concerning smooth closed one-form foliations, Morse form folia-
tions, the co-rank b′1(M) of the fundamental group π1(M), close cohomologous
one-forms, and F-saturated sets. In Section 3, we generalize the notion of
a minimal component from Morse form foliations to arbitrary smooth closed
one-form foliations and study its properties. In Section 4, we introduce extended
minimal components, which are open sets in one-to-one correspondence with
minimal components. In Section 5, we prove our main theorem: the bounds on
c(ω) and m(ω) in terms of b′1(M) and the first Betti number b1(M). Finally, in
Section 6, we apply this theorem to obtain a condition for compactifiability of a
smooth closed one-form foliation in terms of b′1(M).

2. Definitions and useful facts

Unless stated otherwise, we will consider a connected smooth closed orientable
n-dimensional manifold M .

2.1. Smooth closed one-form foliation

Consider a smooth closed one-form ω on M ; its singular set Singω = {x ∈
M | ωx = 0 } is closed in M . This form defines a codimension-one foliation Fω
on M \ Singω.

A leaf of a codimension-one foliation is either proper (or embedded: locally
closed; in particular, leaves closed in M \ Singω are proper), locally dense (its
closure has non-empty interior), or exceptional.

A leaf of Fω closed in M \Singω is “compactified” by Singω in the sense that
L∪ Singω is compact. Such leaves are just closed leaves in terms of the foliation
defined on M \ Singω. However, to avoid repetitive reminding of that closeness
is meant in M \ Singω and not in M , we will call such leaves compactifiable; all
other leaves are non-compactifiable. A foliation is called compactifiable if all its
leaves are compactifiable [11].

In particular, compact leaves, i.e., leaves closed even in M , are compactifiable.
The union of all compact leaves is open [12, Lemma 3.1].

In this paper, we study locally dense and compact leaves of Fω.
Denote by Hω ⊆ Hn−1(M) the subgroup generated by the homology classes

of all compact leaves, and let

c(ω) = rkHω,

which is the maximum number of homologically independent leaves of Fω:

Theorem 2.1 ([13, Theorem 3.1]). Let Hω 6= 0. Then there exists a basis e of
Hω consisting of homology classes of leaves: e = { [L1], . . . , [Lc(ω)] }, Li ∈ Fω.

The rank of the form is rkω = rkQ im[ω], where

[ω] : H1(M)→ R
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is the integration map. Obviously, 0 ≤ rkω ≤ b1(M), the Betti number. A form
ω is exact if and only if rkω = 0.

For a subgroup H ⊆ Hn−1(M), denote

H‡ = { z ∈ H1(M) | z ·H = 0 },

where · is the cycle intersection. Obviously, G ⊆ H implies H‡ ⊆ G‡.

Proposition 2.1 ([13, Theorem 4.2]). Let H‡ω ⊆ ker[ω]. Then:

(i) Fω is compactifiable;

(ii) rkω ≤ c(ω);

(iii) if c(ω) ≥ 1, then, for any k = 1, . . . , c(ω), in any neighborhood of ω,
there exists a smooth closed one-form ω′ with rkω′ = k defining the same
foliation, Fω′ = Fω.

2.2. Morse form foliation

A Morse form ω is a smooth closed one-form that is locally the differential of
a Morse function. This is an important special case, since the set of Morse forms
is open and dense in the space of smooth closed one-forms [12, Lemma 2.1].

The structure of a Morse form foliation is well studied [7, 14]; it is much
simpler than the structure of a general smooth closed one-form foliation. In
particular, its singular set Singω is finite, and it has a finite number of non-
compact compactifiable leaves. A Morse form has no exceptional leaves; moreover:

Proposition 2.2 ([6, 9]). Leaves of a Morse form foliation are either compac-
tifiable or locally dense.

This means that non-compactifiable leaves of Fω are exactly locally dense
leaves; in particular, Fω has no exceptional leaves or proper non-closed (in
M \ Singω) leaves.

For Morse forms, we have a criterion; cf. Proposition 2.1 (i):

Proposition 2.3 ([11, Theorem 7]). A Morse form foliation Fω is compacti-
fiable if and only if H‡ω ⊆ ker[ω].

Definition 2.1 ([6]). A minimal component C of a Morse form foliation Fω is
a connected component of the union of all non-compactifiable leaves.

Note that minimal components are not what in the theory of foliation is
called minimal sets. By Proposition 2.2, a minimal component of a Morse form
is a connected component of the union of all locally dense leaves. Minimal
components of Morse forms have nice properties:

Proposition 2.4 ([9, Proposition 1.8; §2], [6, p. 155]). Each minimal compo-
nent of a Morse form foliation is open, and each locally dense leaf is dense in its
minimal component.
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Denote by m(ω) the number of minimal components of Fω, and recall that
c(ω) is the maximum number of homologically independent compact leaves.
Denote by b1(M) the first Betti number and by b′1(M) the co-rank of the
fundamental group π1(M).

In this paper, we generalize to smooth closed one-forms the following three
facts known for Morse forms:

Theorem 2.2 ([7, Theorem 3.1]). For a Morse form ω, it holds that:

2m(ω) + c(ω) ≤ b1(M). (1)

Theorem 2.3 ([10, Theorem 3]). For a Morse form ω, it holds that:

0 ≤ m(ω) + c(ω) ≤ b′1(M) (2)

and all intermediate values are reached on a given M ; in particular, the bounds
are exact.

Corollary 2.1. For a Morse form ω, if c(ω) = b1(M) or c(ω) = b′1(M), then
the foliation Fω is compactifiable.

Proof. Under these conditions, the above theorems give m(ω) = 0 and by
Proposition 2.2, all leaves of Fω are compactifiable. 2

However, as mentioned in Section 1, the following facts do not generalize:

Corollary 2.2. For a Morse form ω with Singω 6= ∅, it holds that:

2m(ω) +M(ω) ≤ b1(M) + |Singω| − 1, (3)

m(ω) +M(ω) ≤ b′1(M) + |Singω| − 1, (4)

where M(ω) is the number of maximal components of Fω (connected components
of the union of compact leaves). The second bound is exact for each M .

Proof. The foliation graph of a Morse form is constructed of the maximal
components as edges and the connected components of the rest ofM as vertices [7].
For its circuit rank m(Γ) = M(ω) − p + 1, where p is the number of vertices,
[7, Theorem 2.1] states m(Γ) = c(ω). It is known that each vertex contains
a singularity; thus p ≤ |Singω|. With this, (1) and (2), respectively, give the
desired bounds.

The second bound is exact for a generic form, i.e., a form for with p = |Singω|,
defining a compactifiable foliation [10, Proposition 5]. Generic Morse forms are
dense in each cohomology class [15, Lemma 9.2]. 2

The bounds (1) and (3) are not exact: for an n-torus Tn, we have b1(Tn) = n
and b′1(Tn) = 1 (Example 2.1); then (2) gives m(ω) ≤ 1 and (4) gives M(ω) ≤
|Singω|, which makes equality in (1) and (3) impossible for large n.
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2.3. Co-rank of the fundamental group

Relations between the co-rank b′1(M) of the fundamental group π1(M), i.e.,
the maximum rank of its free quotient group, and the first Betti number b1(M)
were studied in [16, 17]. Obviously, b′1(M) ≤ b1(M); more specifically:

Theorem 2.4 ([17, Theorem 4.1]). Let b′, b, n ∈ Z. There exists a connected
smooth closed n-manifold M with b′1(M) = b′ and b1(M) = b if and only if

n = 0: b′ = b = 0;

n = 1: b′ = b = 1;

n = 2: 0 ≤ b and b′ =
⌊
b+1
2

⌋
;

n ≥ 3: b′ = b = 0 or 1 ≤ b′ ≤ b.

The manifold can be chosen orientable if and only if n 6= 2 or b is even.

Some methods of calculating b′1(M) can be found in [17, 18, 19]; in particular:

(i) b′1(S1) = 1;

(ii) b′1(M # N) = b′1(M) + b′1(N), the connected sum;

(iii) b′1(M ×N) = max{ b′1(M), b′1(N) }, the direct product.

Example 2.1. Examples of calculating b′1(M) include:

(1) For n-torus Tn = S1 × · · · × S1, (i) and (iii) give b′1(Tn) = 1.

(2) For a closed orientable surface M2
g = #g

i=1 T
2, (ii) gives b′1(M2

g ) = g.

(3) For M = #p
i=1(Sn × S1), n ≥ 2, (ii) and (iii) give b′1(M) = p.

2.4. Close cohomologous forms

Foliations defined by close one-forms can have very different topological
structure: for example, a form with rational coefficients on a torus defines a
compact foliation, whereas a close form with an irrational coefficient defines a
winding, i.e., a minimal foliation.

However, foliations of smooth closed one-forms that are both close and
cohomologous have, in some sense, similar topology. For example, compact
leaves are stable under small perturbations of the form in its cohomology class.
In particular, denote by F (Ω) the space of smooth closed one-forms representing
a class Ω ∈ H1(M,R); then:

Proposition 2.5 ([12, Theorem 3.1]). Let ω be a smooth closed one-form. Then
there exists a neighborhood U(ω) ⊆ F ([ω]) such that Hω ⊆ Hω′ for any ω′ ∈
U(ω).

The following statement shows that facts concerning Morse form foliations
are useful in the study of arbitrary smooth closed one-form foliations:

Proposition 2.6 ([20, Ch. 2, Theorem 1.25]). On a closed manifold M , the
set of Morse forms is open and dense in each cohomology class Ω ∈ H1(M,R).
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2.5. F-saturated sets

Given a foliation F on M , a subset X ⊆M is F-saturated (or invariant) if
it is the union of some leaves of F . Obviously, the complement of a saturated
set, as well as the union, the intersection, and the difference of two saturated
sets, are also saturated.

Proposition 2.7 ([21, Proposition 1.3]). If X ⊆ M is F-saturated, then so
are X and int(X).

In particular, the closure of each leaf is saturated; the boundary ∂X of a
saturated set is also saturated.

A minimal set µ of a foliation is a closed non-empty saturated subset of M
that has no proper subset with these properties [22, Definition 4.1.1].

For any leaf L ⊆ µ, it holds that µ = L. For a closed leaf, a minimal set
exists but coincides with it. Since ∂L is closed and, by Proposition 2.7, saturated,
a leaf belongs to a minimal set only if ∂L = ∅ or int(L) = ∅, so a locally dense
leaf lies in a minimal set only if µ = L = M , i.e., the foliation is minimal. Note
that in the case of a form foliation Fω, here M is understood as the complement
of Singω, and closeness is understood in this complement.

Thus the notion of a minimal set is mostly useful for the study of exceptional
leaves. For the study of compact leaves, maximal components [7] and homology
classes are used instead, whereas for locally dense leaves, minimal components
discussed in Section 3 below play a similar role.

3. Minimal components of foliations

We will generalize the notion of a minimal component from the theory of
Morse form foliations to general foliations in a way that preserves its usefulness
for studying locally dense leaves.

This notion is not to be confused with that of a minimal set, which typically
cannot contain locally dense leaves as discussed in Section 2.5.

3.1. Definition of a minimal component of a foliation

In the case of Morse forms, one can consider several equivalent statements as
a definition of a minimal component:

Proposition 3.1. For a Morse form foliation, the following definitions of a
minimal component C are equivalent:

(i) C is a connected component of the union of all non-compactifiable leaves
(Definition 2.1).

(ii) C is a connected component of the union of all locally dense leaves.

(iii) C is a minimal non-empty open saturated set (which justifies the term
minimal component).
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Proof. (i) ⇔ (ii): By Proposition 2.2, non-compactifiable leaves of a Morse
form foliation are exactly its dense leaves.

(ii) ⇒ (iii): By Proposition 2.4, C is open. Suppose C is not minimal, i.e.,
there is an open saturated set C′ ( C. Then ∂C′∩C 6= ∅. By Proposition 2.7, ∂C′
is Fω-saturated, so there is a locally dense leaf L ⊆ ∂C′∩C with int(L) ⊂ L ⊂ ∂C′,
whereas the boundary of an open set has empty interior; a contradiction.

(iii) ⇒ (ii): If there exists a leaf L ⊂ C that is not locally dense, then C \ L
is non-empty, open, and saturated, i.e. C is not minimal. 2

However, in the case of general foliations, these properties are not equivalent
and are not equally suitable to serve as a definition of a minimal component—a
tool for studying locally dense leaves:

Variant (i) from Proposition 3.1: This is the original definition from [6]. How-
ever, apart from locally dense leaves, C would contain proper non-closed
and exceptional leaves, which makes it not suitable for the study of locally
dense leaves.

Variant (ii) from Proposition 3.1: C is a saturated set containing only locally
dense leaves. In a sense it is minimal, since it is a connected component of
the union of all such leaves. However, as Example 3.1 below shows, it is
not guaranteed to be open.

Variant (iii) from Proposition 3.1: While it is nice that C would be guaranteed
to be open and the term minimal component would be well-justified,
Example 3.1 shows that such a set does not always exist.

As a generalization of the notion of minimal component, we prefer the
guarantee of existence (ii) over the guarantee of openness (iii):

Definition 3.1. A minimal component C is a connected component of the union
of all locally dense leaves.

Obviously, minimal components are F-saturated sets.

Lemma 3.1. If a leaf L ⊆ C (a minimal component), then:

(i) C ⊆ int(L); and

(ii) C = L.

In particular, each locally dense leaf L is dense in its minimal component: C ⊆ L,
and for each locally dense leaf L it holds that L ⊂ int(L).

Proof. (i) Suppose C 6⊆ int(L). Since C is connected and C ∩ L = ∅, we obtain
C ∩ ∂L 6= ∅. By Proposition 2.7, the boundary ∂L is F -saturated. Since both C
and ∂L are saturated, there exists a locally dense leaf L′ ⊂ C such that L′ ⊆ ∂L,
so ∅ 6= int(L′) ⊂ L′ ⊆ ∂L, whereas the boundary of a closed set has empty
interior; a contradiction.

(ii) L ⊆ C gives L ⊆ C, whereas (i) implies C ⊆ L. Thus C = L. 2
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Proposition 3.2. Locally dense leaves L1, L2 belong to the same minimal com-
ponent if and only if L1 = L2.

Proof. For L1, L2 ⊂ C, Lemma 3.1 (ii) implies L1 = L2 = C. Now, let L1, L2

be locally dense leaves such that L1 = L2, and denote Ci ⊇ Li the corresponding
minimal components. By the same lemma, we have C1 = C2, thus C1 ∪ C2 is
connected, which for connected components implies C1 = C2. 2

Thus a minimal component C is the union of locally dense leaves that share
a common closure. Namely, consider an equivalence relation on F such that
L1 ∼ L2 if and only if L1 = L2; this relation preserves the property of a leaf to
be locally dense. Then a minimal component C ⊃ L can be defined as an area
covered by an equivalence class of locally dense leaves:

C =
⋃
L
′
=L

L′.

So a minimal component consists of, in a sense, similar leaves, being a minimal
subset containing these similar leaves.

3.2. Non-open minimal components

Lemma 3.2. A minimal component C of a foliation is either open or has empty
interior.

Proof. If C is not open, then C ∩ ∂C 6= ∅. Thus there exists a leaf L ⊆ C ∩ ∂C,
since both sets are saturated. Since L is dense in C, we obtain int(C) = ∅. 2

Along the lines of [23, Example 2.10], it is easy to construct a non-closed
manifold with a smooth closed one-form foliation that has a non-open minimal
component. In the rest of this section we will show that, in contrast to the
case of Morse forms foliations, minimal components of smooth closed one-form
foliations do not have to be open even on a closed manifold:

Example 3.1. On a 2-torus T 2, there exists a smooth closed one-form ω with
a minimal component C of Fω that is not open. Moreover,

(i) int(C) = ∅;
(ii) C is the only minimal component of Fω;

(iii) Fω has no exceptional leaves;

(iv) the union of non-compact compactifiable leaves of Fω is locally dense;

(v) Fω has no non-empty minimal open saturated set.

The construction of the example proceeds as follows. On M = T 2, consider a
form ω′′ defining an irrational winding Fω′′ , and a small neighborhood U ′ ⊂M
where the form is exact, ω′′|U ′ = df ′′. We will perturb the form in U ′ to break
down a locally dense leaf into a set of non-compact compactifiable leaves Li, while
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preserving other locally dense leaves. This will result in a minimal component
in which

⋃
Li is dense.

First, in a small enough neighborhood U such that U ⊂ U ′, locally perturb
f ′′ by adding a bulge with a center c0 and a saddle s0; see Figure 1 (a). As
we will explain below, locally dense leaves of the obtained form ω′, ω′|U = df ′,
are dense in the complement C′ of the bulge in M , i.e., in the area outside the
non-compact compactifiable leaf A (in fact it is a minimal component).

Next, consider a small closed interval I = I([0, 1]) ⊂ U transverse to leaves
such that I(0) = s0 and extending outside of the bulge; denote s1 = I(1) ∈ C′.
Assume the leaf D 3 s1 to be locally dense. The point s1 divides D in two
parts, of which at least one is locally dense; denote this ray by R. Choose a
sequence ti ∈ (0, 1] such that t1 = 1, ti+1 ∈ (0, 12 ti], and I(ti+1) = si+1 ∈ R. In
the own topology of R, the points si do not accumulate, because they have no
accumulation point on R in M . Therefore, they divide the entire ray R into a
sequence of line segments [si, si+1], with

⋃
[si, si+1] being dense in C′.

Finally, in a small neighborhood Ui of each si, locally perturb the form to
add a bulge with a saddle at si and a center ci; the sequence of bulges of the
function f obtained by perturbation of f ′ in U is shown in Figure 1 (b) seen
from the side and in Figure 1 (c) seen from above. By choosing small enough
bulges, we can keep the new form ω smooth.

This breaks down the locally dense leaf R into a sequence of compactifiable
leaves Li, with

⋃
Li being dense in M \ U ′. Let us show that the obtained

form ω has the desired properties.
Almost all leaves stayed locally dense after all perturbations. Indeed, consider

a leaf L of the original winding ω′′ distinct from the leaf broken by s0 and the
leaf D broken by s1. Consider any two points x, y ∈ L \ U ′. Since L is linearly
connected, there is a segment [x, y] ⊂ L. Since this segment is compact, there
exists a neighborhood V (s0) such that [x, y]∩V (s0) = ∅. Thus, [x, y] is perturbed
only by a finite number of bulges of f , and, since the derivative of a curve along
the compact segment [x, y] is bounded, [x, y] crosses the perturbation area of
each bulge a finite number of times. Non-singular levels of f are connected, as
shown in the left-hand part of Figure 1 (c), and coincide with the levels of f ′′ in
U ′ \ U . Therefore, each time the segment [x, y] crosses the perturbation area of
a bulge following the leaf, it is perturbed but stays connected. Thus the points
x, y belong to the same leaf of the perturbed form ω. In particular, x belongs to
a locally dense leaf of ω.

We obtained that locally dense leaves of Fω are dense in M \ U ′; in particu-
lar, Fω has a minimal component C. Let us show that C covers the whole area
outside all bulges, including the corresponding part of U ′. Indeed, Theorem 5.1
implies that C is unique, thus C is dense in M \ U ′, i.e., M \ U ′ ⊆ int(C). By
Proposition 2.7, the boundary ∂ int(C) ⊂ U ′ is saturated. However, the only suit-

able saturated set in U ′ is ∂
⋃∞
i=0 Cmaxi , where Cmaxi is the maximal component

(connected component of the union of all compact leaves) around the center ci
of the corresponding bulge. By Lemma 3.2, int(C) = ∅ since the compactifiable
leaves Li are dense in M \ U ′ ⊂ C.
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Figure 1: A smooth closed form with a minimal component C such that int(C) = ∅; see
Example 3.1. (a) A 2-torus M = T 2 with the form ω′, which is an irrational winding ω′′

locally perturbed by a bulge in a neighborhood U where ω′ = df ′; Singω′ = { c0, s0 }; C′ is the
only minimal component, which covers the area outside the loop leaf A, and the locally dense
leaves B,C ⊂ C′ are adjacent to the saddle s0. (b) Side view of the neighborhood U , with the
height function f resulted from perturbing f ′ by countably many smaller bulges with saddles
si. (c) The same neighborhood U shown from above, with the maximal components Cmax

i
corresponding to the bulges shown shaded. The only minimal component C is dense outside
the bulges. The locally dense leaf D is broken down by the singularities si into a countably
many compactifiable leaves Li; dashed lines show parts of Li winding somewhere around T 2

outside of U—“at the other side” of this picture if drawn on the torus.
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We obtained that the foliation constructed above has a unique minimal
component C, which has empty interior and is dense outside the bulges:

C = M \
∞⋃
i=0

(Cmaxi ∪ { ci }).

Finally, since the union of compact leaves is dense in
⋃
Cmaxi and the union

of compactifiable leaves Li is dense in its complement, any non-empty open
Fω-saturated set S includes a compactifiable (possibly compact) leaf L; thus S
is not minimal since S \ L is still non-empty, saturated, and open.

4. Extended minimal components

For the proof of our main result about the number of minimal components,
we will introduce objects that are in one-to-one correspondence with minimal
components but are easier to count; then we will study their properties.

4.1. Definition of extended minimal components

To compensate for the lack of openness, we enclose each minimal component
C of F in a non-empty open F-saturated set—an extended minimal component:

Ĉ = int(C) ⊂M.

By Lemma 3.1, C ⊆ Ĉ. Note that even for Morse forms, whose minimal com-
ponents are open, extended minimal components can contain non-compact
compactifiable leaves and even singularities; see Figure 2 and 3.

There is one-to-one correspondence between Ci and Ĉi:

Lemma 4.1. The following conditions are equivalent: (i) Ĉ1 ∩ Ĉ2 6= ∅; (ii)

C1 = C2; (iii) Ĉ1 = Ĉ2. In particular, |{ Ĉi }| = |{ Ci }|.

Proof. (i) ⇒ (ii) Let Ĉ1 ∩ Ĉ2 = U 6= ∅. Consider leaves Li ⊂ Ci, i = 1, 2; by

Lemma 3.1, we have Ĉi = int(Li). Thus U = int(L1) ∩ int(L2), and U ⊆ Li.
Since U is open, we have Li ∩ U 6= ∅. Moreover, since U is saturated, Li ⊂ U ,
and so Li ⊆ U . We obtain L1 = L2 = U ; Proposition 3.2 gives C1 = C2. 2

Lemma 4.2. For the foliation of an integrable form ω, it holds that ω|∂Ĉ = 0.

Proof. Suppose there is x ∈ ∂Ĉ and ξ ∈ Tx(∂Ĉ) such that ω(ξ) 6= 0. Since

x /∈ Singω, in a small neighborhood U = U(x) there exists a curve τ ⊂ U ∩ ∂Ĉ
transversal to leaves, so that τ ∩L 6= ∅ for any leaf L such that L∩U 6= ∅. Since
τ ⊂ ∂Ĉ and, by Proposition 2.7, ∂Ĉ is saturated, we obtain U ⊂ ∂Ĉ. However,
the boundary of an open set has empty interior; a contradiction. 2
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p
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L0

L2

(a)

L0

C

(b)

Ĉ

(c)

Figure 2: A Morse form ω with an extended minimal Ĉ containing a compactifiable leaf L0.
(a) The form ω on a torus T 2 (represented as a square with identified opposite sides), obtained
from an irrational winding by a local perturbation that adds two centers and two saddles p, q
located at the same level. The perturbation breaks some locally dense leaf into two locally
dense leaves L1, L2 and a compactifiable leaf L0. (b) The only minimal component C of ω is
T 2 without the two closed disks and the compactifiable leaf L0. (c) The extended minimal

component Ĉ includes the compactifiable leaf L0.

T 2
1 T 2

2

p p p

q q q

Figure 3: A Morse form ω with Ĉ ∩ Singω 6= ∅. A double torus M = T 2
1 # T 2

2 with a Morse
form ω obtained by taking two tori T 2

i with an irrational winding, cutting each T 2
i along a

short line transversal to leaves, and gluing the two tori together by the opposite sides of the
cut, so that the leaves are glued as shown by the dashed lines. The set Singω consists of two
saddles p, q surrounded by its only minimal component C = M \ { p, q }, with Ĉ = M . Figure
adapted from [24], where this type of singularities was studied.

4.2. Extended minimal components of a closed one-form foliation

The number of (extended) minimal components of a smooth closed one-form
is finite:

Proposition 4.1. Let ω be a smooth closed one-form on M . Then

(i) Each extended minimal component Ĉ contains at least two cycles z, z′ with
incommensurable periods and thus homologically independent in M ;

(ii) Such cycles zi, z
′
i from different Ĉi are all homologically independent in M ;

(iii) Fω has a finite number of (extended) minimal components, which we denote
by m(ω); namely, m(ω) ≤ 1

2b1(M).

Proof. (i) Suppose all periods of ω in Ĉ are commensurable.
Levitt [25, §0.B] noted that on an arbitrary manifold, all leaves of the foliation

of a smooth closed one-form ω with rkω ≤ 1 are compactifiable. However, we
will give an explicit proof for our case.
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Consider the subgroup H ⊆ H1(M) of cycles induced from Ĉ, with a basis
{ z1, . . . , zk }. By the assumption, rkQ{

∫
z1
ω, . . . ,

∫
zk
ω} ≤ 1, so there exists

0 6= λ ∈ R such that λ
∫
zi
ω ∈ Z for all i. Consider a smooth function F : Ĉ → S1,

F (x) = e
2πiλ

∫ x
x0
ω

where x0 ∈M . In Ĉ \ Singω, the leaves of Fω are connected components of the
inverse images F−1(c) and thus are closed (in this set).

This contradicts the fact that C ⊂ Ĉ and thus Ĉ contains a locally dense leaf.
(ii) Consider Ĉ1, . . . , ĈN and the cycles zi, z

′
i ∈ H1(M) from (i), i.e., induced

from Ĉi such that rkQ{
∫
zi
ω,
∫
z′i
ω} = 2. Consider a combination∑

i

(nizi + n′iz
′
i) = 0.

For each k = 1, . . . , N , it can be rewritten as

z = nkzk + n′kz
′
k = −

∑
i 6=k

(nizi + n′iz
′
i).

The cycle z is induced from both Ĉk and M \ Ĉk, thus by the Mayer-Vietoris

sequence, it is induced from ∂Ĉk. Then Lemma 4.2 implies
∫
z
ω = 0 = nk

∫
zk
ω+

n′k
∫
z′k
ω. Since these periods are incommensurable, we obtain nk = n′k = 0.

(iii). Since the cycles zi, z
′
i from different Ĉi are independent, there is at most

b1(M) of them; thus m(ω) ≤ 1
2b1(M). By Lemma 4.1, m(ω) is also the number

of minimal components Ci. 2

Proposition 4.2. For any Ĉ, there exist z ∈ H1(Ĉ) and u ∈ Hn−1(Ĉ) such that
their intersection z · u 6= 0.

Proof. Denote U = Ĉ and consider homomorphism ϕ∗ : H1(U) → H1(U)
induced by the inclusion ϕ : U ↪→ U . Consider the exact sequence of pairs:

· · · → H1(∂U)
i∗−→ H1(U)

j∗−→ H1(U, ∂U)→ . . .

By Proposition 4.1, there is a closed curve c ⊂ U such that
∫
c
ω 6= 0; denote

z = [c], then ϕ∗z ∈ H1(U). Lemma 4.2 implies that kϕ∗z /∈ im i∗ for any k ∈ Z,
and thus kj∗ϕ∗z 6= 0 for any k.

Since U = U \ ∂U ⊂M is open and thus is a smooth manifold, we have the
Poincaré-Lefschetz duality

D : H1(U, ∂U)→ Hn−1(U,Z)

defined by the cap-product. Denote α = Dj∗ϕ∗z; by construction, α 6= 0.
Since α ∈ Hn−1(U,Z) is of infinite order, it can be viewed as an element of
Hom(Hn−1(U),Z). Thus there exists a cycle u ∈ Hn−1(U) such that α(u) 6= 0;
by construction, z · u 6= 0. 2

14



5. Main theorem

Recall that m(ω) is the number of minimal components of the foliation Fω,
c(ω) is the number of its homologically independent compact leaves, b′1(M) is the
co-rank of the fundamental group π1(M), and b1(M) is the first Betti number.

Theorem 5.1. Let M be a connected smooth closed orientable manifold, dimM ≥
2, and ω a smooth closed one-form on it. Then

(i) m(ω) + c(ω) ≤ b′1(M);

(ii) 2m(ω) + c(ω) ≤ b1(M).

Proof. Consider a maximal system {Lj} of homologically independent compact
leaves of Fω; obviously, their number c = c(ω) is finite: c ≤ b1(M). By

Proposition 4.1, the number m of extended minimal components Ĉi is also finite;
by Lemma 4.1, m = m(ω).

(i) By Proposition 4.2, for each i there exist zi ∈ H1(M) and ui ∈ Hn−1(M)

induced from Ĉi such that zi · ui 6= 0. Let Ni ⊂ Ĉi be submanifolds realizing the
cycles ui.

The system of submanifolds {Li, Nj} is homologically independent: indeed, let

m∑
i=1

piui +

c∑
j=1

qj [Lj ] = 0

for some pi, qj ∈ Z. Since Ĉk ∩Lj = ∅ for all j, k, we have zk · [Lj ] = 0; similarly,

since Ĉk ∩ Ĉi = ∅ for all i 6= k, we have zk · ui = 0. Thus, intersecting the above
equality with each zk gives pk = 0. Then all qj = 0 since [Lj ] are independent.

However, [26, Theorem 2.1] states that the maximum number of homologically
independent closed codimention-one submanifolds of M is b′1(M).

(ii) By Proposition 4.1, each Ĉi contains two cycles z′i, z
′′
i with incommensu-

rable periods. Consider a combination

m∑
i=1

(n′iz
′
i + n′′i z

′′
i ) +

c∑
j=1

mjzj = 0,

where z1, . . . , zc are 1-cycles dual to the leaves L1, . . . , Lc, i.e., zi · [Lj ] = δij .
Similarly, intersecting this equality with [Lk] gives mk = 0 for all k. Then
Proposition 4.1 (ii) gives all n′i = n′′i = 0. We obtained that all cycles z′i, z

′′
i , zj

are independent in H1(M), so their total number is bounded by b1(M). 2

Which bound in Theorem 5.1 is stronger depends on the structure of the
fundamental group π1(M). Denote b′ = b′1(M) and b = b1(M), then unless
b′ = b = 0 we have:

– if b′ ≤ 1
2b, then (i) is stronger (this includes the case dimM = 2);

– if 1
2b < b′ < b, then they are independent;
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– if b′ = b, then (ii) is stronger.

Example 5.1. For n-torus Tn, the bound (i) is stronger: b1(Tn) = n, whereas
b′1(Tn) = 1 (Example 2.1). For M = #p

i=1(S2 × S1), p ≥ 2, the bound (ii) is
stronger: b′1(M) = b1(M) = p.

For each n ≥ 2, even in the class of Morse forms on smooth closed orientable
n-manifolds there are no relations between m(ω), c(ω), b′1(M), and b1(M) other
than those given by (i), (ii), and Theorem 2.4, namely,

n = 2: b1(M) = 2b′1(M);

n ≥ 3: b′1(M) = b1(M) = 0 or 1 ≤ b′1(M) ≤ b1(M).

Indeed, [17, Theorem 5.2] states that for any n ≥ 2 and any combination of
non-negative m, c, b′, and b that satisfies the restrictions specified in this theorem,
there exists a connected smooth closed orientable manifold M with b′1(M) = b′

and b1(M) = b and a Morse form on it with m(ω) = m and c(ω) = c.
For a given connected smooth closed orientable manifold M , the bound (i) is

exact and all intermediate values of m(ω) + c(ω) are realized even in the class of
Morse forms with compactifiable foliations: [10, Theorem 8] states that for any
non-negative c ≤ b′1(M), on M there exists a Morse form with m(ω) = 0 and
c(ω) = c.

For a given surface M = M2
g of genus g, even in the class of Morse forms

there are no relations between m(ω), c(ω) other than (i), which implies (ii): [10,
Proposition 7] states that for any non-negative m and c such that m+ c ≤ g, on
the given M there exists a Morse form with m(ω) = m and c(ω) = c.

We leave open the question of whether on a given manifold M , dimM ≥ 3,
all pairs of m(ω) and c(ω) that satisfy (i) and (ii) can be realized.

6. Condition for compactifiability

For a Morse form foliation, if there exist b′1(M) homologically independent
compact leaves, then all leaves are compactifiable (Corollary 2.1).

By Theorem 5.1, for a smooth closed one-form ω, the condition c(ω) = b′1(M)
implies that Fω has no locally dense leaves. In fact, it cannot have exceptional
and proper non-closed (in M \Singω) leaves either, i.e., all leaves of such foliation
are compactifiable:

Theorem 6.1. Let ω be a smooth closed one-form on M with c(ω) = b′1(M).
Then:

(i) Fω is compactifiable;

(ii) rkω ≤ b′1(M);

(iii) for any k = 1, . . . , b′1(M), in any neighborhood of ω, there exists a smooth
closed one-form ω′ with rkω′ = k defining the same foliation, Fω′ = Fω.
In particular, Fω can be defined by a rational form, rkω′ ≤ 1.

16



Proof. For b′1(M) = 0 the statements trivially hold, so assume b′1(M) ≥ 1.
Recall that F (Ω) is the space of smooth closed one-forms representing a

cohomology class Ω ∈ H1(M,R). By Proposition 2.5, there exists a neighborhood
U(ω) ⊆ F ([ω]) such that, for any ω′ ∈ U(ω), it holds that Hω ⊆ Hω′ ; in
particular, c(ω′) ≥ c(ω) = b′1(M), whereas Theorem 5.1 implies c(ω′) ≤ b′1(M).
Thus c(ω′) = c(ω) = b′1(M) and Hω′ = Hω.

By Proposition 2.6, we can choose ω′ to be a Morse form, for which Fω′
is compactifiable by Corollary 2.1. By Proposition 2.3, we have H‡ω′ ⊆ ker[ω′].
Since Hω′ = Hω and [ω′] = [ω], we obtain H‡ω ⊆ ker[ω]. Then Proposition 2.1
gives the desired facts. 2

Example 6.1. Since b′1(Tn) = 1 (Example 2.1), if a smooth closed one-form
foliation on a torus Tn has a homologically non-trivial compact leaf, then the
foliation is compactifiable and rkω ≤ 1.

For k = 0, the statement (iii) of Theorem 6.1 may not hold even for a
non-singular form, such as ω = dx1 on Tn, whose foliation cannot be defined by
an exact form. For Morse forms, whether a foliation Fω can be defined by an
exact form depends on the structure of the so-called directed foliation graph;
see [27, Proposition 4.8].
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