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Abstract The Reeb graph of a smooth function on a connected smooth closed
orientable n-manifold is obtained by contracting the connected components of
the level sets to points. The number of loops in the Reeb graph is defined as
its first Betti number. We describe the set of possible values of the number of
loops in the Reeb graph in terms of the co-rank of the fundamental group of the
manifold and show that all such values are realized for Morse functions and,
except on surfaces, even for simple Morse functions. For surfaces, we describe
the set of Morse functions with the number of loops in the Reeb graph equal
to the genus of the surface.

Keywords Reeb graph · contour tree · number of loops · Morse function ·
co-rank of the fundamental group
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1 Introduction

Consider a connected smooth closed orientable n-dimensional manifold M ,
n ≥ 2, and a smooth function f : M → R.

1.1 Basic definitions and motivation

The Reeb graph R(f) of f is obtained by contracting the connected components
of the level sets f−1(const) to points, and the orientation on R(f) is defined by
grad(f), the gradient of f ; see Fig. 1 for an example and Section 3 for details.
The Reeb graph of a function shows how the topology of its level sets evolves
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2 Irina Gelbukh

and how they are connected with each other, which is useful for the study of
the function’s behavior.

The notion of the Reeb graph finds numerous practical applications in com-
puter graphics, geometric model databases, and data visualization. The Reeb
graph is also very important for shape analysis in computational topology. A
survey of the corresponding techniques can be found in [2].

For some classes of functions, such as functions with isolated critical points,
in particular, Morse functions, as well as Morse-Bott functions, the Reeb graph
can be thought of as a finite graph endowed with a graph topology. However,
the Reeb graph of an arbitrary smooth funcion is a topological space not
necessarily homeomorphic to any finite or infinite graph; see Example 6.

1.2 Problem statement

Not every graph can be the Reeb graph of some function [33, Theorem 2.1; 27,
Remark 2.3]: for example, a Reeb graph cannot have directed cycles. It can,
though, have undirected cycles.1 In the context of computational geometry,
the first Betti number b1(R(f)) of the Reeb graph is called the number of
loops; see Section 3 for details.

Calculating b1(R(f)) is an important problem. It can be shown that

b1(R(f)) ≤ b1(M), (1)

where b1(M) is the first Betti number of the manifold [3, Eq. (1)]. However,
this bound is not tight.

Some known results concern b1(R(f)) for specific types of function on a
closed orientable surface M2

g of genus g. For example, the influential paper [3,
Lemma A], to which the title of this paper alludes, shows that for a simple
Morse function f (Morse function with only one critical point on each critical
level; see Section 2.4 for details) on a closed orientable surface M2

g of genus g,
it holds

b1(R(f)) = g, (2)

which is much stronger than the bound (1) since b1(M2
g ) is 2g. There, the

authors noted that this equality should be extendable to a wider class of
functions [3, Section 2]. Indeed, it has been recently extended to simple Morse-
Bott functions [26, Theorem 2]. For smooth functions with isolated critical
points, the equality turns into a bound: 0 ≤ b1(R(f)) ≤ g [22, Theorem 5.6].

Various authors have noted that b1(R(f)) is related with the structure of
the fundamental group π1(M). For instance, in a recent paper Kaluba et al. [22,
Corollary 5.2], considering functions with isolated critical points on an n-
manifold, note that if π1(M) is finite, then b1(R(f)) = 0, i.e., the Reeb graph
R(f) is a tree, and show that if the fundamental group π1(M) does not contain
F2, the free group on two generators, then b1(R(f)) is at most 1. This covers
discrete groups that are amenable, and in particular, abelian, solvable, or

1 Some authors refer to a Reeb graph without cycles as a contour tree.
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Loops in Reeb graphs of n-manifolds 3

nilpotent. E.g., for n-torus Tn, while b1(Tn) is n, their result gives an estimate
b1(R(f)) ≤ 1 much stronger than (1), since π1(Tn) is abelian.

1.3 Contributions

In this paper, we generalize Lemma A from [3], which states the equality (2) for
simple Morse functions on closed oriented surfaces, to manifolds of arbitrary
dimension and to a wider class of functions (smooth functions), as well as,
conversely, describe the class of functions for which this equality holds.

Specifically, we describe the set of possible values of the number of loops
in the Reeb graph of an arbitrary smooth function f on a connected closed
orientable n-manifold M of arbitrary dimension n in terms of the structure of
the fundamental group π1(M):

0 ≤ b1(R(f)) ≤ b′1(M), (3)

both bounds being tight and all intermediate values being realized by (simple
if n ≥ 3) Morse functions f on a given manifold (see Theorem 13). Here,
b′1(M) stands for corank(π1(M)), the co-rank of the fundamental group π1(M),
i.e., the maximum rank of its free homomorphic image; see Section 2.3 for
details. This important value, which represents the number of cuts of the
manifold (genus in the case of a surface), is algorithmically computable [25,
Theorem 11.5; 32, Theorem 3]. It can be easily calculated or bounded for
manifolds that are connected sums or direct products of simpler manifolds. In
particular, in Section 2.3 we present the following properties of the co-rank of
the fundamental group:

b′1(M1 # M2) = b′1(M1) + b′1(M2),

b′1(M1 ×M2) = max{ b′1(M1), b′1(M2) }.
(4)

For example,

b′1(M2
g ) = b′1

(
g

#
i=1

(S1 × S1)

)
=

g∑
i=1

1 = g. (5)

In addition, b′1(M) is bounded from above by the isotropy index h(M) [28,
Definition 2], which is the maximum rank of a subgroup in the first cohomology
group H1(M,Z) with trivial cup product

^ : H1(M,Z)×H1(M,Z)→ H2(M,Z);

see Section 2.3 for details. The isotropy index h(M) is easier to calculate than
the co-rank of the fundamental group b′1(M): while for the connected sums
and direct products of manifolds it is calculated similarly to (4), it can also be
bounded in terms of the Betti numbers b1(M) and b2(M); see equations (11)–
(12).
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4 Irina Gelbukh

Since

b′1(M) ≤ b1(M),

the bound (3) is stronger than (1): for instance, given an n-torus Tn = ×n
i=1 S

1,
we have b1(Tn) = n, while (4) gives b′1(Tn) = 1.

Our result generalizes various bounds given in [3, Lemma A; 26, Theorem 2;
22, Theorem 5.6] and other papers, whose authors considered only surfaces or
selected “good” functions with special types of critical points.

We show, however, that all values satisfying the bounds (3) can indeed be
realized by “good” functions, namely, by simple Morse functions, except for
surfaces (Theorem 13). Surfaces are an exception because in this case, simple
Morse functions satisfy the equality (2), which by (5) corresponds only to the
upper bound in (3). Still all non-negative values of b1(R(f)) smaller than g
are realized on M2

g by (non-simple) Morse functions. As an example, for any
surface we explicitly construct a (simple when possible) Morse function with
any given number of loops b1(R(f)) within the bounds of (3) (Example 18).

Conversely, we describe the set of Morse functions on an orientable surface
M2

g of genus g that satisfy the equality (2): these are those functions for which
small regular neighborhoods of singular level sets have genus zero (Theorem 9).
We call such functions as topologically simple Morse functions (Definition 8);
see Section 4 for details. This notion is a generalization of the notion of simple
Morse function (Theorem 10). It is specific for surfaces that for simple Morse
functions the number of loops b1(R(f)) in the Reeb graph does not depend on
the function—as we show in Theorem 13, for n-manifolds with n ≥ 3, it can
take any value within the bounds of (3).

Technically, our results are based on the important fact that the number
of loops b1(R(f)) is equal to c(df), the number of homologically independent
compact leaves of the foliation defined by the function f (Theorem 7). This
allows using the well-studied theory of Morse form foliations, where the value
c(ω) for a Morse form ω (locally the differential of a Morse function) plays an
important role and has been extensively investigated by homological, group-
theoretic, and graph-theoretic methods [8,13]. In particular, the bounds in (3)
hold for it and all intermediate values are known to be realized by Morse
forms (Theorem 3). In this paper we show that they are realized by exact
Morse forms df , where f can be chosen to be a simple Morse function.

The paper is structured as follows. In Section 2, we introduce the necessary
notions and facts about closed one-form foliations, the co-rank of the funda-
mental group, including some methods for its calculation, and Morse functions.
In Section 3, we show that the number of loops in the Reeb graph coincides
with the number of homologically independent compact leaves of the foliation
defined by the function. In Section 4, we describe the class of Morse functions
on a closed orientable surface for which the number of loops in the Reeb graph
coincides with the surface’s genus. In Section 5, we prove our main result: tight
bounds on the number of loops in the Reeb graph in terms of the co-rank of the
fundamental group. We show that all values within these bounds are possible
for Morse functions and, except for surfaces, even for simple Morse functions.
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Loops in Reeb graphs of n-manifolds 5

Finally, in Section 6 we discuss open problems and further directions of this
work.

2 Definitions and useful facts

We consider a smooth closed connected orientable n-dimensional manifold M
with n ≥ 2.

2.1 Closed one-form foliation

Consider a closed one-form ω on M , and denote by Singω its singular set:
Singω = { p ∈ M | ω(p) = 0 }. This form defines a foliation Fω on the com-
plement of the singulat set. A leaf γ of the foliation Fω can be compactifiable
(γ ∪ Singω is compact) or non-compactifiable. In particular, compact leaves
are compactifiable. A foliation is called compactifiable if all its leaves are com-
pactifiable.

Consider also a smooth function f : M → R. Its critical set Crit(f) is
non-empty. On the complement of this set, the function defines a foliation Ff ,
whose leaves are connected components of level sets { f(x) = const }. Compact
leaves are those connected components of (possibly critical) level sets that do
not contain critical points. This foliation coincides with the foliation of the
exact form df .

Compact leaves are submanifolds of M . We denote by c(ω) the number of
homologically independent compact leaves of the foliation Fω. In particular,

c(ω) ≤ b1(M), (6)

the first Betti number. In the case when ω is the exact form df , we denote
c(df) simply by c(f).

For any integer number c, the set of forms such that c(ω) ≥ c is open in the
space of closed one-forms on M of a given cohomology class [13, Theorem 3.1].

2.2 Foliation graph

For simplicity, in this section we assume that the set Singω of singularities of ω
is non-empty, though the facts presented here can be meaningfully generalized
to non-singular forms.

The union C of all compact leaves of a closed one-form foliation is open [13,
Lemma 3.1]. Its connected components Ci are called maximal components.
Each maximal component Ci is a cylinder over a compact leaf γi from Ci:

Ci ∼= γi × (0, 1), (7)

where the diffeomorphism maps γi× t to leaves of the foliation Fω. Denote by
∆ the complement of C. Obviously, the boundaries ∂Ci lie in ∆. Since each
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6 Irina Gelbukh

maximal component is a cylinder, it adjoins one or two connected components
∆j of ∆.

We obtain a decomposition of the manifold into mutually disjoint sets:

M =
⋃
i

Ci ∪
⋃
j

∆j . (8)

This decomposition allows representing the manifold M as a pseudograph2

Γω, called the foliation graph, with maximal components Ci as edges and the
sets ∆j as vertices [7, Section 2]. In this graph, an edge Ci is incident to a
vertex ∆j if and only if the boundary ∂Ci instersects ∆j . The foliation graph
can be directed by the gradient of f (locally ω = df). We denote the directed
foliation graph by Γω. In the case of an exact form, ω = df , we denote Γdf by
Γf and Γdf by Γf ; see Figure 1.

  

∆4

∆2

∆3

∆1

C4

C1

C3C2

∆4

∆1

∆3

∆2

C3C2

C4

C1

Fig. 1 Decomposition (8) for a height function f on a torus T 2 and the corresponding
foliation graph Γf or the Reeb graph R(f). Figure adapted from [7, Fig. 1].

2.3 Co-rank of the fundamental group

The co-rank corank(G) of a finitely generated group G is the maximum rank
of a free quotient group of G, i.e., the maximum rank of a free group F such
that there exists an epimorphism ϕ : G� F [21, page 411; 24, page 37]. Since
the manifold M is compact, its fundamental group π1(M) is finitely presented
and thus has a co-rank. We will denote the co-rank of the fundamental group
of M , also called the first non-commutative Betti number [1, page 142], by
b′1(M).

This value represents the number of cuts of the manifold (genus in the
case of a surface): on the manifold M there exist at most b′1(M) mutually dis-
joint and homologically independent closed codimension-one submanifolds [21,
Theorem 2.1]. In particular, for any closed one-form ω, we have

c(ω) ≤ b′1(M), (9)

2 A graph admitting multiple edges and loops, i.e., edges that connect a vertex with itself.
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Loops in Reeb graphs of n-manifolds 7

which is stronger than (6).
Though co-rank is known to be algorithmically computable for finitely

presented groups [25, Theorem 11.5; 32, Theorem 3], we are not aware of any
simple method of finding b′1(M) for a given manifold. However, for a smooth
closed connected manifold this value is bounded from above by [4, Eq. (9)]

b′1(M) ≤ h(M) ≤ b1(M),

where the isotropy index h(M) [28, Definition 2] is the maximum rank of a
subgroup of the first cohomology group H1(M,Z) on which the cup-product

^ : H1(M,Z)×H1(M,Z)→ H2(M,Z) (10)

is trivial. The isotropy index is often simpler to calculate than b′1(M).
For some simple or low-dimensional manifolds, such as closed orientable

surface M2
g = #g T 2 (connected sum) of genus g and closed non-orientable

surface N2
h = #h RP 2, h ≥ 1, these values are obvious or well known:

circle: b′1(S1) = h(S1) = 1,

sphere, n ≥ 2 : b′1(Sn) = h(Sn) = 0,

n-torus: b′1(Tn) = h(Tn) = 1, [14, Exmp. 3.5; 29, Exmp. 1]

orientable surface: b′1(M2
g ) = h(M2

g ) = g, [24, Lemma 2.1; 29, Exmp. 2]

non-orientable surface: b′1(N2
h) =

[
h
2

]
, h(N2

h) = h− 1. [14, Eq. (4.1)]

For the connected sum of connected closed n-manifolds, n ≥ 2, except
for non-orientable surface N2

h , and for the direct product of connected closed
manifolds it holds

b′1(M1 # M2) = b′1(M1) + b′1(M2), [14, Eq. (1.1)]

b′1(M1 ×M2) = max{ b′1(M1), b′1(M2) }, [14, Theorem 3.1]

and similar equalities hold for h(M) [15, Theorems 21 and 27] (in the case
of the connected sum, for orientable manifolds). One can see that for many
manifolds b′1(M) and h(M) coincide. In particular, this is the case if the fun-
damental group π1(M) is a quasi-Kähler 1-formal group [4, Theorem 1.2].
However, there exist manifolds with b′1(M) < h(M), for example, the Heisen-
berg nilmanifold H3: since the fundamental group π1(H3) is nilpotent, b′1(H3)
equals 1, whereas h(H3) equals 2 [23, Section 6.1].

The isotropy index h(M) in turn can be estimated via the Betti numbers
b1(M) and b2(M) and the structure of the cup product (10). Namely, denoting
bi(M) by bi and rk ker ^ by k, for a smooth closed connected orientable n-
manifold with n ≥ 2, we have [29, page 5]

b1 + kb2
b2 + 1

≤ h(M) ≤ b1b2 + k

b2 + 1
, (11)
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8 Irina Gelbukh

which reduces to h(M) = 1
2 (b1+k) in the case of b2 = 1 and to h(M) = b1(M)

in the case of b2 = 0. If the cup-product ^ is surjective, then

h(M) ≤ k +
1

2
+

√(
b1 − k −

1

2

)2

− 2b2. (12)

In addition to the isotropy index over integers, h(M) = h(M ;Z), one can
define the isotropy index over a field, h(M ;F ), via the first cohomology group
H1(M ;F ) with coefficients in the field F . If the field is of characteristic zero,
then h(M) ≤ h(M ;F ); in particular, h(M ;Q) = h(M) [15, Lemma 10]. For
a field, h(M ;F ) can be conveniently calculated using vector spaces instead of
groups.

2.4 Morse functions and Morse forms

A smooth function f : M → R is called a Morse function if all its critical
points are non-degenerate. Then this set is finite since the critical points are
isolated and M is compact.

Proposition 1 ([18, Theorem 6.2 of Chapter II]) The set of Morse functions
is open and dense in the space C∞(M,R) of all smooth functions on a given
smooth manifold.

A Morse function is simple (called also nonresonant or excellent) if each
critical level contains exactly one critical point.

Proposition 2 ([30, Proposition 1.29]) The set of simple Morse functions is
open and dense in the space of all Morse functions on a given smooth manifold.

A closed one-form ω on M is called a Morse form if it is locally the dif-
ferential of a Morse function. The set of its singularities is finite, since the
singularities are isolated and M is compact. The set of Morse forms is open
and dense in the space of closed one-forms on M [13, Lemma 2.1].

A Morse form with compactifiable foliation is called generic if each set ∆i

in (8) contains exactly one singularity [6, Definition 9.1]. Then, for a simple
Morse function f , the form df is generic.

Theorem 3 ([8, Theorem 8, Remark 12]) Let c be an integer number. Then
there exists a Morse form ω on M such that c(ω) = c if and only if

0 ≤ c ≤ b′1(M),

where c(ω) is the number of homologically independent compact leaves of the
foliation Fω and b′1(M) is the co-rank of the fundamental group. The form can
be chosen with compactifiable foliation and, if dimM ≥ 3, generic.
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Loops in Reeb graphs of n-manifolds 9

In this paper we show that, moreover, the form ω can be chosen exact,
and, if dimM ≥ 3, can even be chosen to be df for a simple Morse function f .

Denote the form’s rank over Q, rk im[ω], where [ω] : H1(M) → R is the
integration map, by rkω. Obviously, 0 ≤ rkω ≤ b1(M), and for an exact form
ω = df , we have rkω = 0.

A given foliation Fω can be defined by different forms (called collinear
forms [10, Definition 3.1]) and even by forms of different ranks:

Theorem 4 ([11, Eq. (14) or Theorem 4.11, first case]) Let Fω be a compac-
tifiable Morse form foliation and r be an integer number. Then there exists a
Morse form ω′ such that Fω′ = Fω and rkω′ = r if and only if

a ≤ r ≤ c(ω),

where rkω is the form’s rank, c(ω) is the number of homologically independent
compact leaves of Fω, and

a =

{
0 if Γω has no directed cycles,

1 otherwise,

where Γω is the directed foliation graph.

Theorem 5 ([9, Theorem 2.1]) Let ω be a Morse form on M . Then

m(Γω) = c(ω),

where m(Γω) is the circuit rank3 of the foliation graph Γω and c(ω) is the
number of homologically independent compact leaves of the foliation Fω.

Example 6 below shows that the condition for the form to be of Morse type
is important. In fact it would be sufficient to require for Γω to be finite.

3 Reeb graph

Given a topological space X and a continuous function f : X → R, consider
an equivalence relation ∼ on X, where p ∼ q whenever p and q belong to the
same connected component of a level set f−1(const) (called by some authors
contour). The Reeb graph R(f) is the quotient space X/∼, endowed with the
quotient topology. Since in our case X = M , a compact connected manifold,
and the quotient map ϕ : M → R(f) is continuous, the Reeb graph R(f) is a
path-connected Hausdorff space. Fig. 1 can be considered as a simple example
of a Reeb graph.

By the number of loops in the Reeb graph we understand its first Betti
number b1(R(f)), which in our case coincides with the rank of its fundamental
group [17].

3 The number of independent cycles in the graph, also called cyclomatic number or nullity.
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10 Irina Gelbukh

The Reeb graph of a smooth function on M could be thought of as a graph
in the graph-theoretic sense, the maximal components being its edges and
other points being vertices; this graph can be shown to be isomorphic to the
foliation graph Γf . However, discarding the topology of the Reeb graph results
in losing important properties:

Example 6 Consider the 2-torus T 2 = S1
1×S1

2 with a coordinate system (x, t),

x ∈ S1
1 , t ∈ S1

2 . Consider a function f : T 2 → R given by f(x, t) = e−
1
t2 cos( 1

t )
on an interval t ∈ (−ε, ε) and glued smoothly outside of this interval; see Fig. 2.
Then Crit(f) has an infinite number of connected components ∆i = S1, and
thus the foliation has an infinite number of maximal components Ci. The Reeb
graph R(f) is S1. In particular, it is connected, and for the number of loops,
we have b1(R(f)) = c(f) = 1. However, the foliation graph Γf is infinite and,
considered without any topology, is not connected: indeed, the vertex { t = 0 }
is not connected by an edge with any other vertex and thus forms a connected
component by itself. In particular, for the circuit rank of the foliation graph,
we have m(Γf ) = 0 < c(f).

t

f

S1
1

S1
2

T 2

Γf

Fig. 2 A smooth function f on a 2-torus T 2 shown as a cylinder with identified sides.
While its Reeb graph (shown at the bottom as a line with identified ends) is connected as
a topological space and has b1(R(f)) = c(f) = 1, its foliation graph Γf is not connected:
the vertex in the center is not connected by an edge to any other node. In particular,
0 = m(Γf ) 6= c(f) = 1.

Theorem 7 Let f be a smooth function on M with the Reeb graph R(f).
Then

b1(R(f)) = c(f),

where b1(R(f)) is the number of loops in the Reeb graph and c(f) is the number
of homologically independent compact leaves of the foliation Ff .

Proof Consider the foliation Ff . By [16, Theorem 3.1], the group generated by
the homology classes of all compact leaves has a basis consisting of homology
classes of compact leaves [γ1], . . . , [γc], where c = c(f).
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Loops in Reeb graphs of n-manifolds 11

The quotient map ϕ maps each leaf γi to a point in the Reeb graph R(f)
that by (7) has a neighborhood homeomorphic to R. Consider

T = R(f) \
c⋃
i

ϕ(γi) = ϕ

(
M \

c⋃
i

(γi)

)
.

Since the leaves γi are homologically independent, the latter manifold is con-
nected. As the Reeb graph of a function on a connected compact manifold with
boundary such that f is constant at the boundary and the complement of any
non-boundary non-singular leaf of f is not connected, T is a dendrite [17]. We
have obtained c cuttings of the Reeb graph R(f) that leave it connected but
result in a homologically trivial space. Thus b1(R(f)) = c [17]. ut

4 Reeb graph of a Morse function on a surface

Recall that a simple Morse function is a Morse function with a unique critical
point on each critical level. For a simple Morse function on a closed orientable
surface M2

g of genus g, it has been shown in [3, Lemma A] that the number
of loops in the Reeb graph, b1(R(f)), coincides with the genus g. In this
section, we completely characterize the subclass of Morse functions satisfying
this property, which we call topologically simple Morse functions.

4.1 Morse functions on a surface

Consider a Morse function f on a closed orientable surface M2
g of genus g.

Denote by ∆i those connected components of level sets of f that contain a
critical point. These sets can be shown to coincide with ∆i from (8), the
vertices of the foliation graph Γf . Following [6, Section 9.1], we will call them
singular leaves. A Morse function has a finite number of critical points and
thus a finite number of singular leaves, which are finite subcomplices of M2

g .
For a subset X of M , its regular neighborhood V (X) is a locally flat, com-

pact submanifold of M , which is a topological neighborhood of X, such that
the inclusion X ↪→ V (X) is a simple homotopy equivalence and X is a strong
deformation retract of V (X) [31, Definition 1]. Since a singular leaf ∆i of a
Morse function can be viewed as a finite CW-complex, it has a regular neigh-
borhood V (∆i) [19, Theorem 1].

The genus g(V ) of an orientable surface V is the maximum number of
cuttings along closed simple curves without increasing the number of its con-
nected components. For a closed orientable surface M2

g given by the connected
sum of g tori, we have g(M2

g ) = g. For a compact surface V ⊂ M2
g , it holds

g(V ) ≤ g ([12, Corollary 8]).
For a Morse function f on M2

g , it holds [12, Theorem 42]

c(f) = g −
∑
i

g(V (∆i)), (13)
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12 Irina Gelbukh

where c(f) is the number of homologically independent compact leaves of the
foliation Ff , V (·) is a small regular neighborhood, and g(·) is the genus of a
surface. The summation is taken over all singular leaves ∆i.

Denote by d(∆i) the number of maximal components glued to the singular
leaf ∆i, i.e., the degree of ∆i as a vertex of the foliation graph Γf , and by Ω1

the set of critical points of index 1 (saddles) of f . Then [12, Lemma 29]

g(V (∆i)) = 1 +
1

2
(|∆i ∩Ω1| − d(∆i)). (14)

4.2 Morse functions with number of loops in the Reeb graph equal to genus

We can generalize the notion of a simple Morse function as follows:

Definition 8 A Morse function f is topologically simple if the regular neigh-
borhood of each its singular leaf ∆i has genus zero.

Theorem 9 Let M2
g be a smooth closed connected orientable surface of genus

g and f : M2
g → R a Morse function. Then the number of loops in the Reeb

graph b1(R(f)) is equal to g if and only if f is a topologically simple Morse
function.

Proof Theorem 7 gives b1(R(f)) = c(f), while (13) implies that c(f) equals g
if and only if f is topologically simple. ut

Theorem 10 A simple Morse function is topologically simple.

While this fact is already implied by (2), for completeness we will give an
independent proof. For this, we need two lemmas.

Lemma 11 Let f be a Morse function and ∆i its singular leaf. Then ∆i has
a small regular neighborhood of genus zero if and only if d(∆i) = |∆i∩Ω1|+ 2
or d(∆i) = 0 (in the latter case ∆i consists of a single point, which is an
extremum).

In particular, for a topologically simple Morse function, each singular leaf
∆i with k saddles adjoins exactly k + 2 maximal components; see Figure 3.
The proof follows from (14).

Lemma 12 Let f be a Morse function. If a singular leaf ∆i contains exactly
one saddle, then d(∆i) = 3.

Proof By (14), if |∆i ∩ Ω1| = 1, then d(∆i) ≤ 3. If g(V (∆i)) = 0, then
by Lemma 11 we have d(∆i) = 3. Suppose g(V (∆i)) ≥ 1. Then by (14),
d(∆i) ≤ 1. Since for a Morse function, each singularity must adjoin at least
one maximal component, d(∆i) 6= 0, thus d(∆i) = 1, i.e., there is only one
maximal component Cj adjacent to ∆i from both below and above, and thus
this Cj is adjacent only to this∆i. Then Cj∪∆i is a closed connected surfaceM2

k

with only one critical point. However, its Euler characteristic χ(M2
k ) = 2− 2k

is even, a contradiction. ut
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Loops in Reeb graphs of n-manifolds 13

C1 C2

C3 C4 C2

C1
∆1 ∆2

Fig. 3 Both ∆i have two singularities, but their regular neighborhoods have different
topological type. Left: g(V (∆1)) = 0 and ∆1 adjoins four maximal components Ci. Here,
d(∆1) = 4, the degree in the foliation graph. Right: the vertical dotted lines are pairwise
identified. Here, g(V (∆2)) = 1 and ∆2 adjoins two maximal components Ci, with d(∆2) = 2.

Proof (of Theorem 10) Let f be a simple Morse function, i.e., each its singular
leaf ∆i contains exactly one critical point. Then the proof follows from Lem-
mas 12 and (14). ut

5 Main theorem: Number of loops in the Reeb graph

Our main result consists in the following theorem:

Theorem 13 Let M be a smooth closed connected orientable manifold, and
m an integer. Then there exists a smooth function f : M → R such that the
number of loops b1(R(f)) (first Betti number) in its Reeb graph is equal to m
if and only if

0 ≤ m ≤ b′1(M),

where b′1(M) is the co-rank of the fundamental group π1(M).
The function f can be chosen to be a Morse function. Moreover, f can be

chosen to be a simple Morse function if and only if either dimM ≥ 3 or M
is a surface of genus m.

For the proof, we will need some lemmas.

Lemma 14 Let M be a smooth closed manifold, γ ⊂ M a codimension-one
submanifold, and C ∼= γ × (0, 1) ⊂ M a cylindrical subset with a coordinate
system (x, t), x ∈ γ, t ∈ (0, 1). Let ϕ : R → R be a Morse function with
Crit(ϕ) ⊂ (0, 1) and Φ : C → R a function defined by Φ(x, t) = ϕ(t). Let ω be
a closed one-form on M with only Morse singularities on M \ C such that

ω|C = dΦ. (15)

Denote by U a small neighborhood of Singω ∩ C. Then there exists a Morse
form ω′ on M such that

ω′|M\U ≡ ω. (16)

If, in addition, ω is generic on M \ C, then ω′ can be chosen generic.
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14 Irina Gelbukh

 

0

1

ε tmax tmin 1− ε 1

0 1

C

C+1 C− C+2

S1 S2

ϕ

Fig. 4 Left: the Morse function ϕ, ϕ(t) = t on R \ (ε, 1 − ε), with one maximum and one
minimum in (0, 1). Right: the form dϕ(t) on a maximal component C has non-Morse singular
subsets S1 = γ × { tmax } and S2 = γ × { tmin } and three maximal components C+1 , C−,

and C+2 with alternating directions of the corresponding arcs in the directed foliation graph.
The second summand in (19) slightly perturbs this function a small neighborhood U of S1

and S2 to produce a Morse function that has the same maximal components outside U .

Proof The form ω has non-Morse critical subset Singω ∩ C = γ ×Crit(ϕ) for
a finite set Crit(ϕ) ⊂ (0, 1); see Fig. 4. Since γ is compact, there exists a small
neighborhood V of Crit(ϕ) such that V ⊂ (0, 1) and γ × V ⊂ U .

Consider a smooth function ψ : R→ R satisfying

ψ(t) =

{
ϕ(t) in W , (17)

0 in R \ V , (18)

where W ⊂ V is a smaller neighborhood of Crit(ϕ). By Proposition 1, there
exists a Morse function f = f(x) on γ. On C, consider a function

F (x, t) = ϕ(t) + λψ(t)f(x) (19)

for a small enough λ. Then the form

ω′ =

{
dF in C,

ω in M \ C

has the desired properties. Indeed, by (15) and (18), the form ω is smooth and
satisfies (16). We only need to show that all critical points of F are of Morse
type.

On C \ (γ ×W ) from (17), for a small enough λ we have

∂F

∂t
= ϕ̇+ λfψ̇ 6= 0,

since both f and ψ̇ are bounded and |ϕ̇| > const > 0. Therefore Crit(F ) ⊆
γ ×W , where by (17),

F (x, t) = ϕ(t)(1 + λf(x)).
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Loops in Reeb graphs of n-manifolds 15

Since the two factors, which can be assumed non-vanishing, depend on different
variables, we have

Crit(F ) = Crit(f)× Crit(ϕ) (20)

and the critical points are non-degenerate since so are those of the factors.
Let now ω be generic on M \C. We can assume that each connected compo-

nent W1 of W from (17) contains only one critical point of ϕ. By Proposition 2,
f can be chosen to be a simple Morse function. Then, by (20), so is F in γ×W1,
and thus the form ω′ = dF is generic in γ ×W1. Since on C, the ∆i from (8)
of the form ω′ lie in the connected components of γ ×W , we obtain that ω′ is
generic. ut

Lemma 15 Let M be a smooth closed connected orientable manifold, γ ⊂M
a codimension-one submanifold, and C ∼= γ × (0, 1) ⊂ M a cylindrical subset
with a coordinate system (x, t), x ∈ γ, t ∈ (0, 1). Let ω be a Morse form
on M such that the levels { t = const } are leaves of the foliation Fω when
t ∈ (0, ε] ∪ [1 − ε, 1) for some small ε. Then the subgraph ΓC

ω of the foliation
graph Γω in C is acyclic.

Proof Since { t = const } are leaves of Fω near the ends of the cylinder, for
each leaf L of Fω we have L ⊂ C if L∩C 6= ∅. In particular, the subgraph ΓC

ω

is well-defined. Suppose there is a cycle z in ΓC
ω . Then there exists a leaf L

of Fω, L ⊂ C, transversal to z, i.e., [z] · [L] 6= 0. However, C = γ × (0, 1) is a
cylinder, so k-cycles in C are induced from γ for all k. Therefore [z] ∈ H1(γ)
and [L] ∈ Hn−1(γ). This implies [z] · [L] = 0, a contradiction. ut

Lemma 16 Let M be a smooth closed connected orientable manifold and ω
a Morse form on M . Then there exists a Morse form ω′ on M with the same
circuit rank of the foliation graph, m(Γω′) = m(Γω), such that Γω′ has no
directed cycles. If ω is generic, then ω′ can be chosen generic.

Proof If ω has no maximal components, then it has the desired properties.
Consider a maximal component Ci ⊂ M . Without loss of generality we

assume that Singω is not empty—otherwise we can locally perturb the form
to obtain a local maximum. Then by (7) the maximal component is an open
cylinder Ci ∼= γ× (0, 1) over a leaf γ of Fω with coordinates (x, t), where x ∈ γ
and t ∈ (0, 1). We can assume ω = dt, so that the foliation on Ci is defined by
t = const.

Consider a Morse function ϕ : R → R with one maximum tmax and one
minimum tmin, such that ϕ(t) = t on R\ (ε, 1−ε) for a small ε > 0; see Fig. 4,
left. Consider a function F (x, t) = ϕ(t) on Ci and a closed one-form

ωi =

{
dF on Ci,
ω on M \ Ci,

which is smooth because dF ≡ dt ≡ ω near the boundaries of Ci.
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16 Irina Gelbukh

The foliation graph Γωi is obtained from Γω by inserting in the middle
of the edge Ci two new vertices and an edge with the opposite direction; see
Fig. 4, right. This operation preserves the circuit rank but breaks any directed
cycle that passes by Ci.

By Lemma 14, there exists a Morse form ω′i that differs from ωi only in a
small neighborhood of the two inserted vertices. In particular, the subgraph
of Γω′

i
that substitutes the edge Ci of Γωi

still contains a bridge edge with
the opposite direction. By Lemma 15, the inserted subgraph is acyclic, so still
m(Γω′

i
) = m(Γω).

Repeating the process for all maximal components Ci (there is a finite
number of them), we obtain a Morse form ω′ on M with m(Γω′) = m(Γω) but
without directed cycles in Γω′ .

Moreover, if ω is generic, then by Lemma 14 the form ω′i above can be
chosen generic, which gives a generic ω′. ut

Lemma 17 Let M be a smooth closed connected orientable manifold and ω
an exact generic Morse form on M . The set of simple Morse functions is open
and dense in the set of Morse functions on M that define the foliation Fω.

Proof Let f be a function such that ω = df . Consider a function ϕ similar
to the one shown in Fig. 4, left, but this time monotonous. Applying it to a
maximal component Cj of ω as in Lemma 16 results in a Morse function in
Fig. 4, right, with the same foliation but different integral by Cj . This allows
slight variation of the integral of ω by a maximal component, preserving Ff .

Consider a connected component ∆i of a critical level set of f . It contains
only one critical point. By the Sard lemma, we can choose an arbitrary small
ε such that f(∆i) + ε is a regular level. Increase by ε the integral of the form
ω = df by each maximal component Cj of Fω that represents an incoming edge
of ∆i, by a slight perturbation of f in the middle of Ci that leaves it constant
on leaves of Fω. Similarly, decrease by ε the integral by each outgoing edge.
This increases f(∆i) by ε, making its critical point unique on its critical level,
but preserving exactness of the form and leaving the foliation Fω intact.

Repeating this process for each ∆i (there is a finite number of them) results
in a simple Morse funtion. ut

Proof (of Theorem 13) By Theorem 7 and the bound (9), we have

0 ≤ b1(R(f)) = c(f) ≤ b′1(M),

where c(f) is the number of homologically independent compact leaves of the
foliation Ff .

Now consider an integer 0 ≤ m ≤ b′1(M). By Theorems 3 and 5, on M
there exists a Morse form ω defining a compactifiable foliation with c(ω) =
m = m(Γω). By Lemma 16, we can assume Γω to have no directed cycles,
and thus by Theorem 4, the form can be assumed exact: ω = df for a Morse
function f .
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Loops in Reeb graphs of n-manifolds 17

If dimM ≥ 3, in the previous paragraph the form ω from Theorem 3 can
be chosen generic, which is preserved by Lemma 16, as well as by Theorem 4
since it preserves Fω. Then by Lemma 17, f can be chosen to be simple.

If dimM = 2, i.e., M is a surface of genus g, then by Theorem 9, m = g
if and only if f is a topologically simple Morse function. By Theorem 10,
this includes the case of simple Morse functions. Existence of a simple Morse
function on M follows from [6, Lemma 9.2]. ut

∆2

∆1 ∆1

Fig. 5 Top row: side view of a torus with height function as in Fig. 1 but tilted by different
angles. Critical levels are shown in bold. Bottom row: the corresponding foliations on the
torus represented as a square with pairwise identified sides. On the left and right, the height
function is a simple Morse function, but in the middle it is not.

. . .

︸ ︷︷ ︸
b

. . .

︸ ︷︷ ︸
g

Fig. 6 Surface of genus g constructed as connected sum of b tori with a simple Morse
height function as on the left of Fig. 5 and g − b tori with a degenerated height function as
in the middle of Fig. 5. This is a simple Morse function if and only if b = g.
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18 Irina Gelbukh

Example 18 On a closed connected orientable surfaceM2
g of genus g, a (simple)

Morse function f with a given number of loops in the Reeb graph b1(R(f))
can be explicitly constructed as follows. Since b′1(M2

g ) = g [24, Lemma 2.1; 20,
Corollary 3.3], by Theorem 13 we have

0 ≤ b1(R(f)) ≤ g.

Consider an integer 0 ≤ b ≤ g. The surfaceM2
g = #g

i=1 T
2
i is the connected sum

of g tori. Consider two types of foliation on T 2: (i) the one defined by a usual
height function, Fig. 5, left, and (ii) the one defined by a height function on the
torus tilted by a specific angle, with two critical points on a critical level, Fig. 5,
middle. The foliation defined by the former function has homologically non-
trivial compact leaves, c(f) = 1. The foliation defined by the latter function
has no homologically non-trivial compact leaves, c(f) = 0. However, its critical
level ∆1 has a regular neighborhood V (γ) with g(V (γ)) = 1. Choosing on b
tori T 2

i the function of the first type and on g−b tori the function of the second
type gives a function f on M2

g with c(f) = b1(R(f)) = b; see Fig. 6. Note that
in accordance with Theorem 13, the result is a simple Morse function exactly
when the second type of foliation is not used, i.e., when b1(R(f)) = g.

Remark 19 The conclusion of Theorem 13 also holds, with suitable adjust-
ments, for simple Morse functions on connected closed surfaces of genus g
that are non-orientable or have h boundary components. Indeed, [3] gives for
these manifolds the following exact bounds:

0 ≤ b1(R(f)) ≤ g, [3, Lemma A]: orientable

0 ≤ b1(R(f)) ≤
[g

2

]
, [3, Lemma C]: non-orientable

g ≤ b1(R(f)) ≤ 2g + h− 1, [3, Lemma B]: boundary, orientable

0 ≤ b1(R(f)) ≤ g + h− 1, [3, Lemma D]: boundary, non-orientable

with all intermediate values being realizable. However, in all these cases the
upper bound coincides with b′1(M), which is, in particular, consistent with (3).
For non-simple Morse functions, the lower bound in the third case can be
relaxed along the lines of Fig. 5.

6 Further directions

In this paper, we have generalized the result [3, Lemma A], originally stated
for simple Morse functions on a closed orientable surface, to arbitrary smooth
functions on closed orientable manifolds of arbitrary dimension.

Currently we work on generalizing our main result (3), and in some form
Theorem 13, to a wider class of “nice” topological spaces, including non-
orientable or non-closed manifolds and manifolds with boundary. Remark 19
shows that our results hold for all maniflods considered in [3].
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Loops in Reeb graphs of n-manifolds 19

However, the topology of the Reeb graph on, for instance, non-closed
manifolds can be rather unusual: the Reeb graph of R \ 0 with the function
f(x, y) = x is path-connected but not arc-connected. What is more, the “ob-
vious” bounds (1), and therefore (3), contrary to a popular belief [5, §VI.4, p.
141] do not hold for some pathological spaces; see Fig. 7.

�

W R(f)

Fig. 7 Left: The Warsaw circle W , obtained by closing the topologist’s sine curve, with a
height function f . Right: The Reeb graph R(f). The space W is simply connected, b1(W ) =
0, while the Reeb graph R(f) is a circle, b1(R(f)) = 1, so that the bounds (1) and (3) do
not hold for W . Note that the space W is rather “good”, e.g., it is arc-connected.

Note that the results of [3] for surfaces with boundary do not generalize
to manifolds of greater dimension in terms of number of holes, as stated in [3,
Lemms B, D]. Indeed, the following example shows that a 3-manifold with one
hole can have functions with arbitrary b1(R(f)):

Example 20 Consider a three-dimensional manifold M with a height function
f . Remove from M the interior of a small two-torus lying flat like a donut
lies on the table. This will result in an additional loop in the Reeb graph: the
central hole of the torus will be a chord in R(f). If, however, the removed
torus is located vertically, like in Fig. 1, then b1(R(f)) does not increase.

Similarly, removing the interior of a surface M2
g of genus g, some of its

handles being located vertifally and some horizontally, increases b1(R(f)) by
any value from zero to g.

The observation from Example 20 can be formulated as follows:

Proposition 21 Let M , dimM ≥ 3, be a smooth manifold, f : M → R a
smooth non-constant function, and m ≥ b1(R(f)) an integer. Then a sub-
set can be removed from M resulting in a manifold M ′ with one connected
component of boundary, such that b1(R(f |M ′)) = m.

Proposition 22 Let M , dimM ≥ 3, be a smooth manifold and m an integer.
Then a subset can be removed from M resulting in a manifold M ′ with one
connected component of boundary, such that for any integer 0 ≤ k ≤ m, there
exists a simple Morse function f : M ′ → R with b1(R(f)) = k.

What is more, the effect of removing the interior of a non-small sufrace from
a three-manifold M can depend on the way it is embedded in M : a solid torus
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20 Irina Gelbukh

embedded in a three-torus T 3 in a contractible way can increase the number
of loops in the Reeb graph, but a solid torus embedded in a non-contractible
way cannot.

Therefore, the study of the number of loops in the Reeb graph of a function
on a manifold M with boundary, or, which is probably the same, the study of
b′1(M), in terms of characteristics of the boundary would involve considering
the topology of the boundary in terms of its homology or its fundamental
group, as well as considering the way it is embedded in M , and not only the
number of connected components of the boundary as in [3].
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