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Abstract

The numbers m(ω) of minimal components and c(ω) of homologically independent
compact leaves of the foliation of a Morse form ω on a connected smooth closed ori-
ented manifold M are studied in terms of the �rst non-commutative Betti numberb′1(M).
A sharp estimate 0 5 m(ω) + c(ω) 5 b′1(M) is given. It is shown that all values of
m(ω) + c(ω), and in some cases all combinations ofm(ω) and c(ω) with this condition, are
reached on a given M . The corresponding issues are also studied in the classes of generic
forms and compacti�able foliations.

1. Introduction and announce of the results

Consider a connected closed oriented manifoldM with a Morse form ω,
i.e., a closed 1-form with Morse singularities Sing ω (locally the di�erential
of a Morse function). This form de�nes a foliationFω on M \ Sing ω.

The number m(ω) of minimal components and c(ω) of homologically in-
dependent compact leaves are important topological characteristics of the fo-
liation. For example, ifFω is compacti�able, i.e.m(ω) = 0, then rkω 5 c(ω),
where rkω is the number of its incommensurable periods; for the the cycle
rank m(Γ) of the foliation graph Γ it holds m(Γ) = c(ω) (Section 2.1; [4]).

Considerable e�ort has been devoted to estimating these numbers. Ob-
viously, c(ω) 5 b1(M), where b1(M) is the Betti number; in [1] (dimM = 3)
and [7] (M2

g ) it was shown that 2m(ω) 5 b1(M). In [4] these facts were
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combined into

(1) 0 5 c(ω) + 2m(ω) 5 b1(M).

In [11] it was shown that c(ω) 5 h(M), where h(M) 5 b1(M) is another ho-
mological characteristic of the manifold; in [4] this was generalized to an
independent estimate

0 5 c(ω) + m(ω) 5 h(M).

An independent estimate in terms of Sing ω was given in [12]:

0 5 c(ω) + m(ω) 5 |Ω1| − |Ω0|
2

+ 1,

where Ω1 is the set of conic singularities andΩ0 of centers. These estimates
were, though, not exact.

In this paper we give an exact estimate in terms of the non-commutative
Betti number b′1(M) � the maximal rank of a free quotient group of the
fundamental group π1(M) [9]; obviously b′1(M) 5 b1(M) and as we show,
b′1(M) 5 h(M). We prove (Theorem 3) that

(2) 0 5 c(ω) + m(ω) 5 b′1(M)

and show that all intermediate values are reached onM even for c(ω) alone:

(3) 0 5 c(ω) 5 b′1(M),

and even in the class of compacti�able foliations (Theorem 8). In particular,
on any M there exists a compacti�able foliations with all (compact) leaves
being homologically trivial; such forms are exact (Theorem 4). OnM2

g , all
combinations of c(ω) and m(ω) that satisfy (2) are reached (Propositon 7);
b′1(M

2
g ) = g (Lemma 2). Possibly all combinations of c(ω) and m(ω) that

satisfy both (1) and (2) are reached on a given manifold (Conjecture 11);
these conditions are independent if dimM = 3 (Remark 9, Example 10).

A Morse form is called generic if each its singular leaf contains a unique
singularity [2]; such forms are dense in the space of Morse forms. All state-
ments mentioned above hold in the class of generic forms, with some excep-
tions for M2

g (Remark 12). Speci�cally, the exact lower bound in (2) onM2
g

except for S2 is 1 (Proposition 14):

1 5 c(ω) + m(ω) 5 b′1(M
2
g ) = g
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and for compacti�able foliations of generic forms onM2
g , (3) is reduced to

c(ω) = g (Lemma 13, Remark 16). With this, for generic forms onM2
g pos-

sible are all combinations of c(ω) and m(ω) such that if Fω is compacti�able
then c(ω) = g, otherwise 1 5 c(ω) + m(ω) 5 g (Proposition 17).

The paper is organized as follows. In Section 2 we give necessary de�ni-
tions and prove some useful facts. In Section 3 we prove the main inequal-
ity (2). In Section 4 we prove the exactness of this inequality by constructing
forms with extremal values. In Section 5 we show that all intermediate val-
ues within the bounds (2) are reached, and in some cases all values ofc(ω)
and/or m(ω) allowed by (2) are reached (this does not eliminate the sim-
pler Section 4 since its examples are used as building blocks). Finally, in
Section 6 we give analogs of our most important statements for the class of
generic forms.

2. De�nitions and useful facts

In this paper, M is a connected closed oriented manifold. A closed 1-form
ω on M is called aMorse form if it is locally the di�erential of a Morse func-
tion. The set Sing ω =

{
p ∈ M | ω(p) = 0

}
of its singularities is �nite, since

they are isolated and M is compact. In this paper we consider only singular
forms, i.e., Sing ω 6= ∅. On M \ Sing ω the form ω de�nes a foliation Fω.

2.1. Leaves and components; c(ω) and m(ω)

A leaf γ ∈ Fω is called compacti�able if γ ∪ Sing ω is compact; otherwise
it is called non-compacti�able. A foliation is called compacti�able if all its
leaves are compacti�able. The number of non-compact compacti�able leaves
γi is �nite, since each singularity can compactify no more than four leaves.

A singular leaf γ0 is a maximal union of one or more leaves and one or
more singularities such that for any two points p, q ∈ γ0 there exists a path
α : [0, 1] → M with α(0) = p, α(1) = q and ω

(
α̇(t)

)
= 0 for all t.

A Morse form (or function) is called generic if each its singular leaf con-
tains a unique singularity [2]. Generic forms are dense in the space of Morse
forms.

By m(ω) we denote the number of minimal components ofFω. A mini-
mal component is a connected component of the union of non-compacti�able
leaves. The latter union is open, the number of minimal components is �nite,
and each non-compacti�able leaf is dense in its minimal component [1, 6].
Obviously, Fω is compacti�able if m(ω) = 0.

Lemma 1. On M2
g , a minimal component contains two cycles z, z′ such

that z · z′ 6= 0.
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Proof. Let U be a minimal component and s ⊂ U a curve such that∫
s ω 6= 0. Consider the cycle in H1(U, ∂U) corresponding to [s] ∈ H1(U).
By Poincaré duality it de�nes a non-zero cocycle α ∈ H1(U,Z). Since
torsion

(
H1(M2

g )
)

= 0, [s] can be viewed as an element ofHom
(
H1(U),Z

)
,

i.e. α(z) = [s] · z. Since α 6= 0 there exists z ∈ H1(U) such that [s] · z 6= 0. ¤

By c(ω) we denote the number of homologically independent compact
leaves of Fω. For a compact leaf γ there exists an open neighborhood con-
sisting solely of compact leaves: indeed, integratingω gives a function f with
df = ω near γ; hence the union of all compact leaves is open.

A connected component of the union of compact leaves ofFω is called a
maximal component. Since Singω 6= ∅, it is a (maximal) cylindrical neighbor-
hood γ × (0, 1) of any its leaf γ ∈ Fω and consists of compact leaves di�eo-
morphic to γ. Its boundary is a union of some non-compact compacti�able
leaves and singularities. Obviously, the number of maximal components is
�nite [4].

The foliation graph Γ is the graph whose edges are maximal compo-
nents (their boundary has one or two connected components) and vertices
are connected components of the union of all non-compact leaves, i.e., a ver-
tex consists of singularities, singular leaves, and/or minimal components; an
edge is incident to a vertice if they adjoin inM . The structure of the foli-
ation graph closely re�ects that of the foliation itself; see details in [4]. In
particular,

(4) m(Γ) = c(ω),

where m(Γ) is the cycle rank [5] of the graph.
By rkω we denote the number of incommensurable periods of the formω,

i.e., rk ω = rkQ { ∫
z1

ω, . . . ,
∫
zk

ω}, where z1, . . . , zk is a basis of H1(M). If
Fω is compacti�able then

(5) rk ω 5 c(ω);

in particular, c(ω) = m(ω) = 0 implies ω = df [4].

2.2. Non-commutative Betti number b′1(M)

By b′1(M) we denote the non-commutative Betti number � the maxi-
mal rank (number of free generators) of a free quotient group ofπ1(M) [1];
b′1(M) 5 b1(M), the Betti number [9].

Lemma 2. b′1(M
2
g ) = g.
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Proof. Let M = M2
g . Obviously, b′1(M) = g since the fundamental

group

π1(M2
g ) = 〈ai, bi, i = 1, . . . , g | a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1〉

can be mapped onto a free subgroup 〈ai, i = 1, . . . , g〉. Let us show
b′1(M) 5 g.

Given a surjectionπ1(M)→ F , rkF = b′1(M), consider a continuous map
f : M → W , W =

∨b′1(M)
i=1 S1

i . Let pi ∈ S1
i be its regular values; ci = f−1(pi)

are circles in M . Consider the map f∗ : H1(M) → H1(W ). Cycles zi ∈
H1(M) such that f∗zi = [S1

i ] ∈ H1(W ) are independent. By construction
[ci] · zj = δij , therefore [ci], i = 1, . . . , b′1(M), are also independent inH1(M).
Since [ci] · [cj ] = 0, we obtain b′1(M) 5 g. ¤

A Morse form (or a minimal component) is calledweakly complete if it
has no centers and any its singular leaf containing a conic singularity (of
index 1 or n− 1) stays connected after removal this singularity. In any non-
zero cohomology class there exists a weakly complete Morse form [8].

3. Main theorem: bounds on c(ω) + m(ω)

Theorem 3. Let M be a smooth closed oriented manifold andω a Morse
form on it. Then

(6) 0 5 c(ω) + m(ω) 5 b′1(M)

and all intermediate values are reached on a given M ; in particular, the
bounds are exact.

Proof. (i) dimM = 3. Let Fω contain m1 not weakly complete andm2

weakly complete minimal components, m1 + m2 = m(ω). By [9, Theorem
I.1] the fundamental group of the space of leavesπ1(M/ω) can be represented
as a free product of free abelian groups

π1(M/ω) = (Z ∗ · · · ∗ Z︸ ︷︷ ︸
k0

) ∗ (Z ∗ · · · ∗ Z︸ ︷︷ ︸
k1

) ∗ (P1 ∗ · · · ∗ Pm2),

where the �rst k0 factors correspond to the set of the compact leaves and
form π1(Γ) (Γ is the foliation graph); the next k1 factors correspond to the
set of weakly complete minimal components, k1 = m1; and the groups Pi

correspond to weakly complete minimal components, rkPi = 2, with k0 +
k1 + m2 5 b′1(M).

Since k0 = m(Γ), the latter inequality and (4) implies (6).

Erratum:

k1 factors correspond to the set of not weakly complete minimal components
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(ii) dimM = 2. Let γ1, . . . , γc, c = c(ω), be homologically independent
compact leaves and U1, . . . , Um, m = m(ω), minimal components of Fω. By
Lemma 1 there exist zi, z

′
i ⊂ Ui such that zi · z′i 6= 0. The cycles [γ1], . . . , [γc],

z1, . . . , zm are independent; indeed,
( c∑

i=1

ni[γi] +
m∑

i=1

mizi

)
· z′j = 0

implies all ni,mi = 0. Moreover, all [γi] · [γj ] = [γi] · zj = zi · zj = 0. Thus
c + m 5 g = b′1(M

2
g ) (by Lemma 2).

Existence of all values within the bounds (6) follows from Theorem 8
below. Exactness of the bounds also independently follows from Theorem 4
and Proposition 5. ¤

4. Existence of extremal values of c(ω) and m(ω)

Theorem 4. On M there exists a Morse form ω with c(ω) = m(ω) =
0, i.e., Fω being compacti�able and all its leaves homologically trivial (such
forms are exact).

Proof. Exactness of the form follows from (5). We will construct a
Morse function f with c(df) + m(df) = 0.

(i) dimM = 3. Consider a tubular neighborhood Y of a wedge sum∨b1(M)
i=1 S1

i of circles that generate a basis of H1(M); ∂Y is connected and
homologically trivial. Let ∂Y be a leaf of f .

The inside of Y can be foliated as shown in Fig. 1. The �gure shows the
neighborhood of a wedge sum of (two) circlesS1

i (the edges of the cylinders
are identi�ed). Take a center p0; surrounding leaves are spheres. Extend
them along S1

1 until they self-intersect forming a conic singularity p1 and
then an S1×Sn−2. Extend the latter alongS1

2 until it self-intersects forming
a conic singularity p2. Repeating this for all S1

i will foliate Y such that all
leaves are homologically trivial and ∂Y is a leaf.

Now extend f on the rest of M ; all its leaves are homologically trivial.
Indeed, denote M ′ = M \ Y ; ∂M ′ = ∂Y . By construction, H1(M ′, ∂M ′) =
0, then

(7) Hn−1(M ′,Z) = Hn−1(M ′)⊕ torsion
(
Hn−2(M ′)

)
= 0

by the Poincaré duality. We obtainHn−1(M ′) = 0.
(ii) dimM = 2. On S2 all leaves are homologically trivial. LetM = M2

g ,
g = 1. Fig. 2(a) shows a torus T 2 (the opposite sides of the square are
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Fig. 1. Foliating the inside of Y

identi�ed) with a desired foliation: pi are centers and qi saddles. Finally,
M2

g = ]g
i=1 T 2

i is assembled as a connected sum of tori, see Fig. 2(b): a leaf
surrounding p2 of each previous torus is identi�ed with a leaf surroundingp1

of the next torus. ¤

Fig. 2. Compacti�able foliation with c(ω) = 0 on (a) T 2, (b) M2
g = ] T 2

i

Proposition 5. On M there exists a Morse form ω with c(ω) = b′1(M)
and m(ω) = 0 (Fω compacti�able).

Proof. By de�nition of b′1(M) there exists a surjective homomorphism
π1(M) → F , where F is a free group, rk F = b′1(M). Consider a corre-
sponding map ϕ : M → W , where W =

∨b′1(M)
i=1 S1

i . Let αW ∈ H1(W,R),
rk αW = b′1(M), and α = ϕ∗αW .

Let xi ∈ S1
i be regular values of ϕ; each Mi = ϕ−1(xi) is a compact sub-

manifold of M . Denote by M ′ the result of cutting M open along the Mi;
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∂M ′ =
⋃

i(M
+
i ∪M−

i ). We obtain α|M ′ = 0. Thus we can choose on M ′ a
Morse function f without singularities on ∂M ′ such that it is constant on
each connected component of ∂M ′, f(M+

i )− f(M−
i ) =

∫
S1

i
α, and f |∂M ′ �ts

together smoothly, giving onM a Morse form ω ∼ α. Obviously, Fω is com-
pacti�able; thus by (5) it holds c(ω) = rkω = b′1(M). From Theorem 3 it
follows c(ω) = b′1(M) and m(ω) = 0. ¤

Proposition 6. If b1(M) = 2 then on M there exists a Morse form ω
with minimal foliation; in particular, c(ω) = 0 and m(ω) = 1.

Proof. For dimM = 3 this was proved in [1]. A corresponding foliation
on M2

g = ] T 2
i is shown in Fig. 3. ¤

Fig. 3. Minimal foliation on M2
g = ](T 2

i )

5. Existence of intermediate values of c(ω) and m(ω)

Proposition 7. Let c,m ∈ Z. On M2
g there exists a Morse form ω such

that c(ω) = c and m(ω) = m i�

0 5 c + m 5 b′1(M
2
g ) = g.

Proof. By Theorem 3 and Lemma 2, we only need to show existence.
To construct the desired ω represent M2

g as a connected sum of c tori with
a compact, and m with a minimal, non-singular foliation plus an M2

g−c−m
foliated as in Theorem 4, glued together by a circle inserted between leaves
via a saddle as shown in Fig. 4. ¤

Theorem 8. Let c ∈ Z. On M there exists a Morse form ω with c(ω) = c
i�

0 5 c 5 b′1(M).

The form can be chosen with m(ω) = 0 (Fω compacti�able).
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Fig. 4. Preparing a summand for the connected sum

Proof. By Theorem 3 we only need to show existence. FordimM = 2
see Proposition 7; let dimM = 3. By Proposition 5, on M there exists a
Morse form ω0 with compacti�able foliation and c(ω0) = b′1(M). Starting
from this foliation, we will construct a compacti�able foliation withc(ω) = c.

Let γ1, . . . , γc be homologically independent compact leaves ofFω0 . De-
note by M the result of cutting M open along γi; ∂M =

⋃
i(γ

+
i ∪ γ−i ). We

will construct onM a form ω with no homologically non-trivial leaves other
than connected components of ∂M, which are γi. We have done this for
M = M (c = 0, ∂M = ∅) in Theorem 4.

As in that theorem, consider a tubular neighborhoodY of a wedge sum∨
i S

1
i of circles that generate a basis ofH1(M), foliate it as shown in Fig. 1,

and extend the obtained Morse function f to the rest ofM. We need, how-
ever, a closer look atM′ = M\ Y than (7), since now ∂M′ = ∂Y ∪ ∂M.

By construction, i∗H1(∂M′) = H1(M′), where i : ∂M′ →M′ is the in-
clusion map. Let us consider the commutative diagram:

Hn−1(M′, ∂M′) ∂→ Hn−2(∂M′)

↓ ↓
H1(M′) i∗→ H1(∂M′)

where vertical arrows are Poincaré duality. Since by construction i∗ is sur-
jective, we have ker i∗ = 0. Thus ker∂ = 0. Consider the long exact sequence
of a pair:

→ Hn−1(∂M′) i∗→ Hn−1(M′) j→ Hn−1(M′, ∂M′) ∂→ Hn−2(∂M′) →

Since im j = ker ∂ = 0, we obtain Hn−1(M′) = i∗Hn−1(∂M′). Thus leaves
of f on M are homologous to 0 or γi.

Again, we may assume that f |∂M �ts together smoothly, giving onM a
Morse form ω with c(ω) = c. Obviously, the corresponding foliation is com-
pacti�able. ¤
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Remark 9. If dimM = 3, not all combinations of c(ω) and m(ω) allowed
by Theorem 3 may be possible. Inequality (1) imposes additional restrictions
on m(ω) if b′1(M) > 1

2b1(M). The latter values are independent: for a torus
Tn it holds b′1(T

n) = 1, b1(Tn) = n; for a connected sum M = ]m
i=1(S

n−1 ×
S1) it holds b′1(M) = b1(M) = m [1].

Example 10. Let M = S2×S1; obviously, b′1(M) = b1(M) = 1. Though
Theorem 3 allows m(ω) = 1, (1) prohibits it.

Conjecture 11. On M there exist Morse forms with all combinations
of c(ω) and m(ω) that satisfy (6) and (1).

6. Generic forms

Remark 12. Theorems 3, 4, and 8 hold in the class of generic forms for
dimM = 3. Propositions 5 and 6 hold in this class for anyM .

Indeed, the corresponding Morse forms or functions constructed in their
proofs are generic. However, forM2

g the three theorems, as well as Proposi-
tion 7, should be modi�ed to hold in the class of generic forms.

For the following fact proved in [10], we give a shorter independent proof.
Lemma 13 (see [10]). On M2

g , if ω is generic and m(ω) = 0 (Fω com-
pacti�able) then c(ω) = g.

Proof. Consider the foliation graphΓ. Its cycle rankm(Γ) = Ne−Nv +
1, where Ne is the number of edges andNv of vertices [5]. Since ω is generic
and Fω compacti�able, vertices of Γ are of indices 1 or 3: 2Ne = n1 + 3n3,
where ni is the number of vertices of index i [5]. So 2m(Γ) = n3 − n1 + 2.
Obviously, n1 = |Ω0| and n3 = |Ω1|, where Ω0 is the set of centers and Ω1 of
conic singularities. By (4), we have 2c(ω) = |Ω1| − |Ω0|+ 2. On the other
hand, on M2

g it holds |Ω1| − |Ω0| = 2g − 2. We obtain c(ω) = g. ¤

Proposition 14. The statement of Theorem 3 holds for generic forms
except that on M2

g , g = 1, the exact lower boundary in (6) is 1:

1 5 c(ω) + m(ω) 5 b′1(M
2
g ) = g.

Proof. That 0 in (6) is unreachable for a generic form on M2
g , g 6= 0,

follows from Lemma 13, which together with Lemma 2 gives

c(ω) + m(ω) = c(ω) = b′1(M
2
g ) = g.
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Existence of all intermediate values in (6) in the class of generic forms
follows from Proposition 17 and Theorem 8 (Remark 12). Exactness of the
lower bound also independently follows from Proposition 15 and Proposi-
tion 6 and that of the upper bound from Proposition 5 (Remark 12). ¤

Proposition 15. The statement of Theorem 4 holds for generic forms
i� dimM = 3 or M = S2.

Proof. For exclusion of M2
g , g = 1, see Lemma 13. ¤

Remark 16. Similarly, the statement of Theorem 8 holds for generic
forms except that on M2

g the form cannot be chosen with m(ω) = 0 unless
c(ω) = g.

Proposition 17. Let c, m ∈ Z. On M2
g there exists a generic Morse

form ω such that c(ω) = c and m(ω) = m i� either m > 0 and 1 5 c + m 5 g
or m = 0 and c = g (cf. Proposition 7).

Proof. By Lemma 13 and Proposition 14, we only need to show exis-
tence. If m = 0, represent M2

g as a connected sum of g tori with a compact
non-singular foliation. Otherwise, represent it as a connected sum ofc tori
with a compact, and m− 1 with a minimal, non-singular foliation plus an
M2

g−c−m+1 with a foliation as in Proposition 6 (Remark 12). ¤
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