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Abstract

The numbers m(w) of minimal components and c(w) of homologically independent
compact leaves of the foliation of a Morse form w on a connected smooth closed ori-
ented manifold M are studied in terms of the first non-commutative Betti numberd (M).
A sharp estimate 0 < m(w) + c(w) S b3 (M) is given. It is shown that all values of
m(w) + ¢(w), and in some cases all combinations of m(w) and c(w) with this condition, are
reached on a given M. The corresponding issues are also studied in the classes of generic
forms and compactifiable foliations.

1. Introduction and announce of the results

Consider a connected closed oriented manifold M with a Morse form w,
i.e., a closed 1-form with Morse singularities Singw (locally the differential
of a Morse function). This form defines a foliation F,, on M \ Singw.

The number m(w) of minimal components and ¢(w) of homologically in-
dependent compact leaves are important topological characteristics of the fo-
liation. For example, if F, is compactifiable, i.e. m(w) = 0, then rkw < ¢(w),
where rkw is the number of its incommensurable periods; for the the cycle
rank m(I") of the foliation graph I' it holds m(I") = ¢(w) (Section 2.1; [4]).

Considerable effort has been devoted to estimating these numbers. Ob-
viously, c¢(w) < b1(M), where by (M) is the Betti number; in [1| (dim M = 3)
and [7] (MJ) it was shown that 2m(w) < by (M). In [4] these facts were
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combined into
(1) 0 < c(w) + 2m(w) < bi(M).

In [11] it was shown that ¢(w) < h(M), where h(M) < by (M) is another ho-
mological characteristic of the manifold; in [4] this was generalized to an
independent estimate

0 < c(w) + m(w) £ h(M).
An independent estimate in terms of Singw was given in [12]:

0= c(w) +mw) = W—I—l,
where ] is the set of conic singularities and g of centers. These estimates
were, though, not exact.

In this paper we give an exact estimate in terms of the non-commutative
Betti number b} (M) — the maximal rank of a free quotient group of the
fundamental group 71 (M) [9]; obviously b} (M) < b1(M) and as we show,
by (M) < h(M). We prove (Theorem 3) that

(2) 0 = c(w) +m(w) = by (M)

and show that all intermediate values are reached on M even for ¢(w) alone:

(3) 0 = c(w) = by (M),

and even in the class of compactifiable foliations (Theorem 8). In particular,
on any M there exists a compactifiable foliations with all (compact) leaves
being homologically trivial; such forms are exact (Theorem 4). On Mgz, all

combinations of ¢(w) and m(w) that satisfy (2) are reached (Propositon 7);
b’l(MgQ) = g (Lemma 2). Possibly all combinations of ¢(w) and m(w) that

satisfy both (1) and (2) are reached on a given manifold (Conjecture 11);
these conditions are independent if dim M = 3 (Remark 9, Example 10).

A Morse form is called generic if each its singular leaf contains a unique
singularity [2[; such forms are dense in the space of Morse forms. All state-
ments mentioned above hold in the class of generic forms, with some excep-
tions for M7 (Remark 12). Specifically, the exact lower bound in (2) on M}

except for S? is 1 (Proposition 14):

1S c(w) +mw) SV(MF) =g
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and for compactifiable foliations of generic forms on Mg2, (3) is reduced to
c(w) = g (Lemma 13, Remark 16). With this, for generic forms on Mg2 pos-

sible are all combinations of ¢(w) and m(w) such that if F, is compactifiable
then c¢(w) = g, otherwise 1 < ¢(w) + m(w) < ¢ (Proposition 17).

The paper is organized as follows. In Section 2 we give necessary defini-
tions and prove some useful facts. In Section 3 we prove the main inequal-
ity (2). In Section 4 we prove the exactness of this inequality by constructing
forms with extremal values. In Section 5 we show that all intermediate val-
ues within the bounds (2) are reached, and in some cases all values ofc(w)
and/or m(w) allowed by (2) are reached (this does not eliminate the sim-
pler Section 4 since its examples are used as building blocks). Finally, in
Section 6 we give analogs of our most important statements for the class of
generic forms.

2. Definitions and useful facts

In this paper, M is a connected closed oriented manifold. A closed 1-form
w on M is called a Morse form if it is locally the differential of a Morse func-
tion. The set Singw = {p € M |w(p) = 0} of its singularities is finite, since
they are isolated and M is compact. In this paper we consider only singular
forms, i.e., Singw # (). On M \ Singw the form w defines a foliation F,,.

2.1. Leaves and components; ¢(w) and m(w)

A leaf v € F,, is called compactifiable if v U Singw is compact; otherwise
it is called non-compactifiable. A foliation is called compactifiable if all its
leaves are compactifiable. The number of non-compact compactifiable leaves
~; is finite, since each singularity can compactify no more than four leaves.

A singular leaf 4° is a maximal union of one or more leaves and one or
more singularities such that for any two pointsp,q € 70 there exists a path
a: [0,1] = M with (0) = p, a(1) = ¢ and w(d(t)) = 0 for all ¢.

A Morse form (or function) is called generic if each its singular leaf con-
tains a unique singularity |2]. Generic forms are dense in the space of Morse
forms.

By m(w) we denote the number of minimal components of . A mini-
mal component is a connected component of the union of non-compactifiable
leaves. The latter union is open, the number of minimal components is finite,
and each non-compactifiable leaf is dense in its minimal component [1, 6].
Obviously, F,, is compactifiable if m(w) = 0.

LEMMA 1. On M;, a minimal component contains two cyclesz, 2’ such
that z - 2/ # 0.
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PROOF. Let U be a minimal component and s C U a curve such that
[,w#0. Consider the cycle in Hi(U,dU) corresponding to [s] € Hi(U).
By Poincaré duality it defines a non-zero cocycle a € H(U,Z). Since
torsion (Hl(MQQ)) =0, [s] can be viewed as an element of Hom ( H,(U),Z),
i.e. a(z) =[s]- 2. Since v # 0 there exists z € H;(U) such that [s]- z # 0. O

By ¢(w) we denote the number of homologically independent compact
leaves of F,,. For a compact leaf v there exists an open neighborhood con-
sisting solely of compact leaves: indeed, integratingw gives a function f with
df = w near 7; hence the union of all compact leaves is open.

A connected component of the union of compact leaves of F,, is called a
mazimal component. Since Singw # (), it is a (maximal) cylindrical neighbor-
hood v x (0,1) of any its leaf v € F,, and consists of compact leaves diffeo-
morphic to v. Its boundary is a union of some non-compact compactifiable
leaves and singularities. Obviously, the number of maximal components is
finite [4].

The foliation graph T' is the graph whose edges are maximal compo-
nents (their boundary has one or two connected components) and vertices
are connected components of the union of all non-compact leaves, i.e., a ver-
tex consists of singularities, singular leaves, and/or minimal components; an
edge is incident to a vertice if they adjoin in M. The structure of the foli-
ation graph closely reflects that of the foliation itself; see details in [4]. In
particular,

(4) m(l) = ¢(w),
where m(T") is the cycle rank [5] of the graph.
By rkw we denote the number of incommensurable periods of the formw,

ie., rkw= rk@{ O ka w}, where z1,..., 2 is a basis of Hy(M). If
F. is compactifiable then

5) thw € cfw);
in particular, ¢(w) = m(w) = 0 implies w = df [4].
2.2. Non-commutative Betti number b (M)

By b} (M) we denote the non-commutative Betti number — the maxi-
mal rank (number of free generators) of a free quotient group ofm; (M) [1];
by (M) < by (M), the Betti number [9].

LEMMA 2. b} (M2) = g.
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PROOF. Let M = M7. Obviously, bj(M) Z g since the fundamental
group

7r1(M92) =(aj,bi, i=1,..., g|abia;'b;" ... agbgaglbgl =1)
can be mapped onto a free subgroup (a;, i=1,...,9). Let us show
by (M) = g.
Given a surjection 1 (M) — F, vk F' = b} (M), consider a continuous map

foM—-W W= \/?I;(IM) Sl. Let p; € S} be its regular values; ¢; = f~1(p;)

are circles in M. Consider the map f.: Hi(M) — H (W). Cycles z; €
Hy(M) such that f.z; = [S}] € Hi(W) are independent. By construction
[ci] - zj = 035, therefore [¢;], i = 1,...,b] (M), are also independent in Hy (M).
Since [¢;] - [¢j] = 0, we obtain b} (M) < g. O

A Morse form (or a minimal component) is called weakly complete if it
has no centers and any its singular leaf containing a conic singularity (of

index 1 or n — 1) stays connected after removal this singularity. In any non-
zero cohomology class there exists a weakly complete Morse form [8].

3. Main theorem: bounds on ¢(w) + m(w)

THEOREM 3. Let M be a smooth closed oriented manifold andw a Morse
form on it. Then

(6) 0 = c(w) +m(w) = 0 (M)

and all intermediate values are reached on a given M; in particular, the
bounds are ezxact.

PROOF. (i) dim M = 3. Let F,, contain mj not weakly complete and ma
weakly complete minimal components, m; + mg = m(w). By [9, Theorem
I.1] the fundamental group of the space of leavesm; (M /w) can be represented
as a free product of free abelian groups

m(M/w)=(Zx*-xZ)x (Lx---xL)*(Py*- % Pp,),
ko k1

where the first ko factors correspond to the set of the compact leaves and
form 71 (") (I" is the foliation graph); the next k; factors correspond to the
set of weakly complete minimal components, k1 = my; and the groups P;
correspond to weakly complete minimal components, rk P; = 2, with kg +
k1 + mso § b/1<M)

Since kg = m(I"), the latter inequality and (4) implies (6).

Erratum:

k1 factors correspond
to the set of not weakl
complete minimal
components
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(i) dim M = 2. Let v1,...,7, ¢= c(w), be homologically independent

compact leaves and Uy, ..., Uy, m = m(w), minimal components of F,. By
Lemma 1 there exist z;, 2z, C U; such that z; - 2z, # 0. The cycles [y1],. .., [,
21, ..,2m are independent; indeed,
C m
(an[%] + Zmlzz> . Z}- =0
i=1 i=1
implies all n;,m; = 0. Moreover, all [y;] - [v;] =[] - 2j = zi - z; = 0. Thus

c+mS g= b'l(Mgz) (by Lemma 2).

Existence of all values within the bounds (6) follows from Theorem 8
below. Exactness of the bounds also independently follows from Theorem 4
and Proposition 5. O

4. Existence of extremal values of ¢(w) and m(w)

THEOREM 4. On M there exists a Morse form w with c¢(w) = m(w) =
0, i.e., F,, being compactifiable and all its leaves homologically trivial (such
forms are exact).

ProOOF. Exactness of the form follows from (5). We will construct a
Morse function f with ¢(df) + m(df) = 0.
(¢7) dim M = 3. Consider a tubular neighborhood Y of a wedge sum

\/flz(lM ) S} of circles that generate a basis of Hy(M); Y is connected and
homologically trivial. Let Y be a leaf of f.

The inside of Y can be foliated as shown in Fig. 1. The figure shows the
neighborhood of a wedge sum of (two) circles S} (the edges of the cylinders
are identified). Take a center py; surrounding leaves are spheres. Extend
them along Si until they self-intersect forming a conic singularity p; and
then an S' x S"~2. Extend the latter along S4 until it self-intersects forming
a conic singularity p2. Repeating this for all S} will foliate Y such that all
leaves are homologically trivial and 9Y is a leaf.

Now extend f on the rest of M; all its leaves are homologically trivial.
Indeed, denote M’ = M \'Y; OM’' = dY. By construction, Hy(M',0M') =
0, then

(7) H" Y(M',Z) = H,—1(M") @ torsion (H,—2(M')) =0

by the Poincaré duality. We obtain H,,_1(M’) = 0.
(i1) dim M = 2. On S? all leaves are homologically trivial. Let M = M2,

g=1. Fig. 2(a) shows a torus T2 (the opposite sides of the square are
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Fig. 1. Foliating the inside of Y

identified) with a desired foliation: p; are centers and ¢; saddles. Finally,
Mg2 = ¢ | T? is assembled as a connected sum of tori, see Fig. 2b): a leaf
surrounding py of each previous torus is identified with a leaf surroundingp;

of the next torus. O

SR

Fig. 2. Compactifiable foliation with ¢(w) = 0 on (a) T2, (b) M = T}

PROPOSITION 5. On M there exists a Morse form w with c¢(w) = b} (M)
and m(w) =0 (F,, compactifiable).

PROOF. By definition of b} (M) there exists a surjective homomorphism

m (M) — F, where F is a free group, rk F' = by (M). Consider a corre-

sponding map ¢ : M — W, where W = \/?'1:(1]\4) Sl Let aw € HY(W,R),

rkay = b (M), and o = p*apy.
Let x; € S} be regular values of ¢; each M; = ¢~ !(x;) is a compact sub-
manifold of M. Denote by M’ the result of cutting M open along the M;;
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oM’ = J,(M;" U M;"). We obtain a|,,, = 0. Thus we can choose on M’ a
Morse function f without singularities on M’ such that it is constant on
each connected component of OM’, f(M;") — f(M;) = [q1 «, and f|yy, fits

together smoothly, giving on M a Morse form w ~ a. Obviously, F,, is com-
pactifiable; thus by (5) it holds ¢(w) = rkw = b} (M). From Theorem 3 it
follows c¢(w) = by (M) and m(w) = 0. O

PROPOSITION 6. If bi(M) = 2 then on M there exists a Morse form w
with minimal foliation; in particular, c(w) = 0 and m(w) = 1.

PRrOOF. For dim M = 3 this was proved in [1]. A corresponding foliation

on M7 = §T7 is shown in Fig. 3. O
p p p
<>
q q q

Fig. 3. Minimal foliation on M? = #(T7)

5. Existence of intermediate values of ¢(w) and m(w)

PROPOSITION 7. Let c,m € Z. On Mg2 there exists a Morse formw such
that c¢(w) = ¢ and m(w) = m iff

0<c+mSb(M))=g.

PRrROOF. By Theorem 3 and Lemma 2, we only need to show existence.
To construct the desired w represent M, 3 as a connected sum of ¢ tori with

a compact, and m with a minimal, non-singular foliation plus an M, gz_c_m
foliated as in Theorem 4, glued together by a circle inserted between leaves
via a saddle as shown in Fig. 4. O

THEOREM 8. Let ¢ € Z. On M there exists a Morse formw with c(w) = ¢
iff
0 =< e b (M).

The form can be chosen withm(w) =0 (F,, compactifiable).
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Fig. 4. Preparing a summand for the connected sum

PRrROOF. By Theorem 3 we only need to show existence. Fordim M = 2
see Proposition 7; let dim M = 3. By Proposition 5, on M there exists a
Morse form wy with compactifiable foliation and c¢(wp) = b} (M). Starting
from this foliation, we will construct a compactifiable foliation withe(w) = c.
Let 71,...,7. be homologically independent compact leaves of F,,,. De-

note by M the result of cutting M open along v;; OM = |J;(v;t U~; ). We
will construct on M a form w with no homologically non-trivial leaves other
than connected components of 9M, which are +;. We have done this for
M =M (c=0,0M =0) in Theorem 4.

As in that theorem, consider a tubular neighborhoodY of a wedge sum
\/; S} of circles that generate a basis of Hy (M), foliate it as shown in Fig. 1,
and extend the obtained Morse function f to the rest of M. We need, how-

ever, a closer look at M" = M\ 'Y than (7), since now OM’ = 9Y U OM.
By construction, i, Hy (OM’) = Hi (M), where i : OM’ — M’ is the in-
clusion map. Let us consider the commutative diagram:

Hy (M, 0M) 2 H,_5(0M)
! !
HY(M) 5 HYOM)

where vertical arrows are Poincaré duality. Since by constructioni, is sur-
jective, we have keri* = 0. Thus ker @ = 0. Consider the long exact sequence
of a pair:

— Hy oy (OM') 55 ooy (M) 5 Ho (M, 0M') 2 H,y_p(0M') —

Since im j = kerd = 0, we obtain H,_1(M') =i, H,_1(0M’). Thus leaves
of f on M are homologous to 0 or ;.

Again, we may assume that f|,,, fits together smoothly, giving on M a
Morse form w with ¢(w) = ¢. Obviously, the corresponding foliation is com-
pactifiable. (I
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REMARK 9. If dim M 2 3, not all combinations of ¢(w) and m(w) allowed
by Theorem 3 may be possible. Inequality (1) imposes additional restrictions
on m(w) if bj (M) > $b1(M). The latter values are independent: for a torus
T™ it holds by (T™) = 1, b1 (T™) = n; for a connected sum M = ", (S"~! x
S1Y it holds b} (M) = by (M) = m [1].

EXAMPLE 10. Let M = S? x S1; obviously, b} (M) = b1 (M) = 1. Though
Theorem 3 allows m(w) = 1, (1) prohibits it.

CONJECTURE 11. On M there exist Morse forms with all combinations
of c(w) and m(w) that satisfy (6) and (1).

6. Generic forms

REMARK 12. Theorems 3, 4, and 8 hold in the class of generic forms for
dim M = 3. Propositions 5 and 6 hold in this class for any M.

Indeed, the corresponding Morse forms or functions constructed in their
proofs are generic. However, for M? the three theorems, as well as Proposi-
tion 7, should be modified to hold in the class of generic forms.

For the following fact proved in [10], we give a shorter independent proof.

LEMMA 13 (see [10]). On Mg2, if wis generic and m(w) =0 (F, com-
pactifiable) then c(w) = g.

Proor. Counsider the foliation graphI'. Its cycle rank m(I") = N — N, +
1, where N, is the number of edges and N,, of vertices [5]|. Since w is generic
and F, compactifiable, vertices of I' are of indices 1 or 3: 2N, = nj + 3ns,
where n; is the number of vertices of index ¢ [5]. So 2m(I") = ng —ny + 2.
Obviously, n; = |Q] and ng = |1, where g is the set of centers and 27 of
conic singularities. By (4), we have 2c(w) = |Q1] — || + 2. On the other
hand, on M it holds |Q;] — |Q] = 29 — 2. We obtain ¢(w) = g. O

PROPOSITION 14. The statement of Theorem 3 holds for generic forms
except that on M;, g = 1, the exact lower boundary in (6) is 1:

1< e(w) +mlw) < B (M2) = g.

PrROOF. That 0 in (6) is unreachable for a generic form on MQQ, g #0,
follows from Lemma 13, which together with Lemma 2 gives

c(w) +mw) = c(w) = b'l(MgQ) =g.
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Existence of all intermediate values in (6) in the class of generic forms
follows from Proposition 17 and Theorem 8 (Remark 12). Exactness of the
lower bound also independently follows from Proposition 15 and Proposi-
tion 6 and that of the upper bound from Proposition 5 (Remark 12). O

PROPOSITION 15. The statement of Theorem 4 holds for generic forms
iff dimM >3 or M = S2.

PRrROOF. For exclusion of ]\/./927 g = 1, see Lemma, 13. O

REMARK 16. Similarly, the statement of Theorem 8 holds for generic
forms except that on ]\4!}2 the form cannot be chosen with m(w) = 0 unless

c(w) =g.
PROPOSITION 17. Let ec,m € Z. On Mg2 there exists a generic Morse

form w such that c(w) = ¢ and m(w) = m iff eitherm >0and1 <c+m=g
orm =0 and c = g (cf. Proposition7).

PRrROOF. By Lemma 13 and Proposition 14, we only need to show exis-
tence. If m = 0, represent M, 92 as a connected sum of g tori with a compact
non-singular foliation. Otherwise, represent it as a connected sum ofc tori
with a compact, and m — 1 with a minimal, non-singular foliation plus an
Mg2_c_m+1 with a foliation as in Proposition 6 (Remark 12). O
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