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ON COLLINEAR CLOSED ONE-FORMS

IRINA GELBUKHM™

Abstract

We study one-forms with zero wedge-product, which we callinear, and their foliations. We
characterise the set of forms that define a given foliation, with special attention to closed forms and
forms with small singular sets. We apply the notion of collinearity to give a criterion for existence of a
compact leaf and to study homological properties of compact leaves.

2000Mathematics subject classificatioprimary 57R30; secondary 58A10.
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1. Introduction and statement of the main results

We consider a closed orientaelimensional manifold and a smooth one-forasaon
it with the singular set Sing. This form defines on Supp= M \ Singa a foliation
%,, which can be extended to the whdleas a singular foliationF,, (Definition 5.2).
We shall study the conditions for other forgiso define the same foliatiory; = 7,
orfp =Fa.

We call formsa, B collinear, denoted by || 8, if « A g = 0 [10]. Collinear
one-forms appear in many problems of theoretical physics, for example, in general
relativity: type | vacuum solutions with aligned Papapetrou fields dé triplet
ansatz [2 11]. Ranks (of group of the periods) of collinear Morse form®$ed one-
forms with non-degenerate singularities) have been studied Jn [10

On the intersection of their supports, collinear forms are proportional (Lemma 3.3).
Moreover, on this set they share important properties—in particular, integrability
(Proposition 3.6) and, if they are integrable, the foliation. Thus the set of the forms that
define the same foliatiofi, are those that (obviously) have the corresponding support
and are collinear witlw (Theorem 3.7).

The relation of collinearity is reflexive and symmetric, but generally not transitive
(Fieure 1). For Morse forms, however, collinearity is an equivalence relatiof ji€®
generalise this fact to one-forms with nowhere dense singular sets (Proposition 3.8). In
this case, integrability of the form is a class invariant and the singular foliation uniquely
identifies integrable classes (i.e., it is a class invariaffiedint for diferent classes).
Similarly, for one-forms with a common support, collinearity is an equivalence relation
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(Corollary 3.5), integrability is a class invariant, ane tioliation uniquely identifies
integrable classes.

Closed forms, i.eda = 0, are an important class of integrable one-forms. They
are especially interesting because they allow for usingooaiiogy techniques. In
particular,a A 8 = 0 implies ] — [8] = 0, where— : HY(M,Z) x HY(M,Z) —
H2(M, Z) is the cup-product and] is the cohomology class; this is used in our study
of foliations defined by closed forms (Theorem 7.3). In addit closed one-forms
define an important class of foliations—foliations witht(nlonomy; moreover, any
codimension-one foliation without holonomy is topolodig@quivalent to a foliation
defined by a closed one-formJ]. For closed one-forms, singular foliatiof, is a
good approximation of the foliatiofi, (Lemma 5.3 to Lemma 5.6).

For closed collinear one-forms, the intersection of thepmorts consists of entire
leaves of both forms (Corollary 4.3). In particular, no ledfone form can intersect
the boundary of the support of the other form (Propositi@).4.

Our main result states that for closed one-forms with smadlugh singular sets,
their foliations coincidefi the forms are collinear (Theorem 6.5); this has been known
for Morse forms [L0]. Note that, unlike Theorem 3.7, coincidence of supporisas
longer required but is instead guaranteed by the conditions

Namely, for closed one-forms with at most £ 2)-dimensional singular sets, it
holds 7, = ¥z iff a || B (Theorem 6.5); note that for such forms|| g implies
Suppe = SuppB. We mean here the topological (covering) dimension (Dédini2.1),
since Singr is generically not a submanifold.

The condition on Sing can be relaxed: for closed one-forms with at most ()-
dimensional, i.e., nowhere dense (Lemma 2.3), singular béoldsF, = ?ﬁ iffa|l B
(Theorem 6.5). Further generalisations include: for (reatassarily closed) one-forms
with dim Singe: < 0, @ || g implies 7, = ?ﬁ. (Proposition 6.2); for closed one-forms
(irrespective of their singular setg), = ?ﬁ impliesa || B (Proposition 6.4).

The notion of collinearity is useful for the study of foliatis defined by closed
one-forms, as can be illustrated by the following examples.

Farberet al.[4, 5] gave a necessary condition for existence of a compactridagi
foliation defined by a so-called transitive Morse form, imte of the cup-product. We
generalise this condition in terms of collinearity to aniavy closed one-form and
improve it to a criterion (Theorem 7.2).

In [1Q], it was shown that the topology of a foliation defined by a stoform of
the maximum possible rank for the givéh rka = bi(M) (the first Betti number) is
connected with the structure of the cup-prodwty) < rk ker—, wherec(a) is the
maximum number of homologically independent compact Isafe,, an important
value in the theory of foliations defined by Morse forms §]. We use the notion of
collinearity to generalise this fact to arbitrary close&dorms (Theorem 7.3).

The paper is organised as follows. In Section 2 we give varmanditions for
Singa to be small, in terms of covering dimension. In Section 3 vistiuce collinear
forms and consider some their properties. In Section 4 wayshe supports of closed
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collinear one-forms. In Section 5 we define the notion of slagfoliation and show

that it is well-behaved for closed forms. In Section 6 we grour main result on the
characterisation of the set of closed forms with small sujgpibhat define the same
foliation, as an equivalence class of collinear forms. Bna Section 7 we use the
notion of collinearity to study homological properties @ingpact leaves of a foliation
defined by a closed one-form.

2. Singular set

We consider smooth one-forms on a closed oriemtgliimensional manifoldv.
One-forme is a smooth section of the cotangent bundlévifi.e., it assigns to each
pointx € M a linear functionaky: TyM — R. Denote

Singa = {x€ M | ay =0}

Obviously, Singr € M is closed and the support Supp= M \ Singe is open.
Generically, Singy is not a submanifold.

To characterise a subset bf that is not necessarily a submanifold, we use the
topological (covering) dimension:

Dermnition 2.1 ([12]). The covering dimensionlim X of a topological spacX is the
minimum valuen such that every open cover ¥fhas an open refinement in which no
pointis included in more than+ 1 elements.

For instance, din® = —1; the covering dimension of a simplicial complex is the
maximum dimension of its simplices; di®{vS?!) = 2. If Y € X, thendimY < dim X.
Covering dimension of a manifold coincides with its convemal dimension 2,
Corollary 1 of Theorem IV.3]. In particular:

Remark 2.2. If X € M andX 2 iR (i is an inclusion), then dirX > k.

ForX ¢ M, dimX < n- 1 iff interior int(X) = @ [12, Theorem IV.3]; in particular,
the covering dimension of a leaf of a foliationns- 1. If dim X < n - 2 thenX does
not locally divideM [12, Theorem IV.4].

Thus dim Singr < n = dim M; obviously,d Suppx € Singa = M \ Suppa.

Lemma 2.3. For a one-form, the following conditions are equivalent:

(i) Singa is nowhere dense in M;

(i) Suppeis densein M;

(iii) 9 Suppa = Singe;

(iv) int(Singa) = 0;

(v) dimSinge <n-1

Proor. (i) & (iii): Y C X is open and densefidY = YC, the complement.
(i) & (iv): int(Y) = 0iff Y = 9(YC). (iv) & (v): dimY < dimX iff int(Y) = 0 [12,
Theorem IV.3]. (iv)e (i): Singa is closed. m|
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3. Collinear one-forms

Derinition 3.1. Two differential formsy, 8 are callectollinearif a A8 = 0; we denote
this asa || 8.

The term is motivated by Lemma 3.3 below.
Remark 3.2. The set ofx € M at whicha || B is closed.

DenoteS(«, 8) = Suppe N Suppg; it is open. The collinearity relation is reflexive
and symmetric but not necessarily transitive: obviouS(y;, 8) = 0 impliesa || 8, so
any two formse, 8 are connected via two forms; such thai || w1, w1 || w2, and
w2 || Bevenifa A B # 0; see keure 1; cf. [18]. Therefore collinearity is generally not
an equivalence relation. In the sequel we, however, shaBider various conditions
under which collinearity is an equivalence.

T

a = dx wr = f(xy)dx w2 =g(xy)dy p=dy

Ficure 1. Chain of collinear forms on a 2-torus. Note tltv;, w,) = 0; f andg are bump functions.

Lemma 3.3. Leta, B be one-forms. The following conditions are equivalent:

i) «alp

(i) a=f(X)BonSupps,

(i) B =9g(X) @ onSupp.

On S(a, B), the functions §x), g(x) are smooth and non-vanishing, witlixj g(x) = 1.

Proor. (ii) or (iii) = (i) is obvious.
(i) = (ii) and similarly (iii): Consider on Supp a smooth vector fielg with non-
vanishings(&x). Choose
a(£x)
f(x) = ,

¥ = Bed
which, by collinearity, does not depend on the choicé:dhdeed, for any other such
field & collinearity gives

(@ A B)(éx. £5) = alé)B(E) — a(§)B(Ex) = 0.
Thusa = f(x) 8 on Supyp; in addition, f(X) # 0 onS(a, B). |
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So onS(«, B) collinear forms are proportional; thus the term. Howetleig does
not necessarily hold on the whdl& for instance, any two forms with non-intersecting
supports are collinear, but not proportional.

CoroLLARrY 3.4. OnSuppB, a || ands || y imply« || y.

CororLary 3.5. Consider a set A of one-forms on M such thé¢ ) = S € M is the
same for anyy, 8 € A; for instanceSuppe = S for anya € A. Then the collinearity
is an equivalence relation on A.

On S(a, B), collinear forms share important properties. Consideindegrable
form «; it defines a foliatior#, on Supp.

ProposiTion 3.6. Leta be an integrable one-form. Then for a one-fgghholdsg || «
iff on S= S(a,p) itis also integrable andls = 7, ls.

By F|s we understand a foliation & whose leaves are path-connected compo-
nentsofyNsS,yeF.

Proor. Let a || B. By the Frobenius theorena, is integrableff @ A da = 0. By
Lemma 3.3, or§ it holdsg = f(X)a, soB8 A d8 = 0 and thug3 is also integrable. The
foliations coincide sincér = 0} = {fa = 0}.

Assume nowr, = 3 onS(a, B). OutsideS(e, B) the forms are obviously collinear.
Considerx € S(a,B) andéy, nx € TxM = (ny, Txy), wherey € #, is the leaf that
containsx andny € TyM \ Txy; éx = ang + &, nx = bny + 1}, for somea, b € R and
&1y € Tyy. Sincealr,, = Blr,, = 0, we have

(@ A B)(éxsmx) = a(an)B(bny) — a(bnyp(an) = 0,

i.e.a |l B. O

Therefore, collinear forms are either both integrable athbmon-integrable on
S(a, B), i.e., integrability orS is a class invariant under the equivalence relation from
Corollary 3.5. Integrable one-formas 3 are collinearff 7, = 73 on S(a, ), i.e.,¥ s
uniquely identifies an integrable class under this equinadeaelation.

We have obtained a characterisation of the set of forms defagiven foliationf
as the equivalence class, under collinearity relationpohf with the corresponding
support. In particular:

Tueorem 3.7. Given a foliationF = %, of a one-forma, the forms definingr are
one-forms collinear witlw and having the same support.

The latter condition automatically holds—and thus can béttech from Theo-
rem 3.7—in the class of closed forms with small enough simgséts; this is for-
mulated below as part of Theorem 6.5.

Forms with small singular sets give another important ct#sforms on which
collinearity is an equivalence relation:



Prorosition 3.8. On the set of one-forms with nowhere dense singular sets (cf.
Lemma 2.3), collinearity is an equivalence relation.

Proor. It is sufficient to prove transitivity. Suppose || 8 andg || v, buta J| v at
x € M and thus, by Remark 3.2, on some opér: (. By Corollary 3.4,U C Singg;
a contradiction. m|

In this case, integrability on the whol is a class invariant (by Proposition 3.6 and
the fact thatrAde is continuous) but the foliation is not, as can be seendnodg 3. For
closed such forms, however, the singular foliation intraetlibelow in Definition 5.2
is a class invariant uniquely identifying an equivalenaess| This is also formulated
below as part of the same Theorem 6.5.

4. Supportsof closed collinear one-forms

In the sequel we consider an important class of integrabhedoclosed one-forms.
Properties of the supports of closed collinear one-fornos@ito be connected with
their foliations.

Lemma 4.1, Let @, B be closed one-forms and = f(xX)3 on Supps. Then {X) is
constant on leaves 5.

This follows by direct calculation from the equatida = df A 8= 0.

By Proposition 3.6, leaves of collinear integrable one¥fei, 8 coincide on
S = S(a,p), i.e., Fols = Fsls. The following proposition shows that if both forms
are closed, then leaves of one form cannot intersect thedaoyiof the support of the
other form; see IGure 2.

upps

Suppe Su Suppa S

Ficure 2. Left: this is possible only for non-closed collinear farmight: foliations of closed collinear
forms.

ProrosiTion 4.2. Let a,8 be closed collinear one-forms angd € #,. Theny, N
Supps # 0 impliesy,, ¢ Supps and moreovey,, € 73 (and similarly forSingp).
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Proor. By Lemma 3.3, on Supp it holdsg = f(X)a. Lety, N Supp8 # 0. If
Yo € SUPPB, then there existgy € y, N Singg, so f(Xy) = 0. By Lemma 4.1, we have
f(X) = 0 onvy,, i.e. forallx € v, it holdsBx = 0, thusy, c SingB; a contradiction.
By Proposition 3.6y, € 7. m]

The condition for the forms to be closed is important. Indesda torusM = T?2
considera = dy, 8 = (X* + y?) dy locally (while far from the singularity, assume
this codficient to be 1); seeifure 3. Then Supp = M, Supp3 = M\ {0};

v ={y = 0} € %, intersects both Sugpand Sing3 = {0}.

a =dy B=(¢+y)dy

Ficure 3. One-forms on a 2-torus (far from the singularity, thefiioent is assumed to be 1).

CororrLary 4.3. Let a, B8 be closed collinear one-forms;, € %,, ys € 3. Then
Yo Nyp %= 0 impliesy, = ;. In particular,

s@h = |J r
yeFaTs
Indeed, by Proposition 4.2,,ys C S(a, ), then by Proposition 3.6, = yz.
In other words, leaves a@f andg coincide if intersect, and the intersection of their
supports consists of entire leaves of both forms.

5. Singular foliation of a closed form
Let @ be an integrable one-form. Its foliation is defined only op&w, namely:

Remark 5.1. A foliation 7, is a decomposition of Suppinto leaves: two pointp, q €
Suppa belong to the same leaf iff there exists a smooth path [0,1] — Suppe,
s(0) = p, s(1) = q, such that(&(t)) = 0,t # 0, 1.

This notion can be extended to the whMeto define a so-called singular foliation.
In [4], singular foliation for Morse forms (their singular setg éinite) is defined as in
Remark 5.1 by substitutiniyl for Suppa. For arbitrary integrable forms we, however,
prefer to relax the smoothness condition:

Dermvirion 5.2. A singular foliation 7, is a decomposition oM into leaves two
pointsp, g € M belong to the same leafiff there exists a continuous pah[0, 1] —
M, s(0) = p, S(1) = g, such that ons™(Suppe) \ {0, 1} it is differentiable and
a(§(t)) = 0.



In FiGURE 4, Fy = Fol ?]3 ={y},y = M; and%; = {y1.72}, y1 = St. With
the relaxed smoothness condition as in Definition 5.2, we Fav= ?[;, while if we

required the path to be smooth &h we would haveF, = F,, which is, perhaps, a
matter of personal taste.

a =dy B =x*dy 0= fw(xy)dy  ¢=fs(xy)dy

Ficure 4. Smooth integrable one-forms on a 2-tois= T?2 (the codficients are assumed to be 1 far

from the singular set). Singis the graph of the Weierstrass function, which is contirsuiout nowhere

differentiable. As a closed subsethf it is the set of zeros of a smooth functidp [13, Theorem 1.5

ff.]. Note that this path-connected set does not contain anytmaal differentiable patls: [0, 1] — M.

The functionfs is obtained similarly from the closed topologist's sinevajyrit is connected but not
path-connected.

For anyy € %, if yny # 0, theny C 7, i.e., a singular leaf of,, consists of entire
leaves off, and path-connected components of Sing

Unlike leavesy of a usual foliations, which have the same dimension dim-=
n—- 1, leave$ of a singular foliation# can have dterent dimensions & dim7y < n.
For instance, a center singularity is a 0-dimensional dargeaf; if int(Singa) # 0,
then there existy € ¥, with dimy = n (cf. Lemma 2.3). By Remark 5.1, if
dimy # n-1, theny N Singa # 0; in particular, dimy < n— 2 implies thaty C Singa
is a path-connected component of Sing

The notion of singular foliation as defined by Definition Satile well-defined, is
rather counter-intuitive for non-closed forms. As seeniinuke 4, for a leafy € Fo it
is possible that dim{n Suppa) = nor everiy = M with Suppe # 0. Thus for a curve
s(t) € y it is possible that(S(t)) # 0. Two non-collinear forms with Supp= Supp3
can haver, = 75, as in RGURE 5.

For closed forms, however, the notion %%, is quite intuitive and is a good
approximation off,, as we show in the rest of this section. The fggrim Ficure 4
shows that closedness is important in Lemma 5.3 to Lemma 5.6.

Lemma 5.3. Leta be a closed one-forr, € #,, and gt) € 7 a differentiable curve.
Thena(&(t)) = 0.

Proor. ConsiderF(x) = fox a(§(t))dt. Sinces C 7, for anyx € [0, 1] there exists
a pathuy: [0,1] — M connectings(x) and (0), such thatfol a(Ux(t))dt = 0. Thus
F(x) € P, whereP = ([ a | z € Hi(M))z is the group of periods. Sindeis finitely
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a=fxy)dx  g=f(xydy

Ficure 5. Non-closed one-forms on a 2-toris = T?; f is a bump function. Supp = Supps and
Fo=F5=17),7=M,buta 8.

generated and thus at most countable whilis continuous, we havEé = const and
thusa(§(t)) = 0. m|

CoroLLARY 5.4. Leta be a closed one-form ande 7,. Thenint(y) € Singa.

CoroLLArY 5.5. For a closed one-fornSinga is nowhere densgfidimy < n— 1 for
anyy € ¥,.

Lemvia 5.6. For a closed form%, |suppe = Fa-

By Fls we understand, again, a decompositiorsdfito path-connected compo-
nentsofyNs,ye¥.

Proor. Consider a path-connected compon¥mt y N Suppe andx € X. Thenx € y
for somey € %, soy € X. For anyx’ € X\ x there exists a curvet) € X C 7,
5(0) = x, (1) = X. By Lemma 5.3,a(8(t)) = 0; by Remark 5.1X € y. Thus
X=y. O

6. Coallinear formswith small singular sets

We shall show that for closed one-forms with small enougbuder sets, collinear-
ity implies coincidence of their singular foliations or,dase of even smaller singular
sets, coincidence of their (conventional) foliations a@ngharticular, their supports.

Recall that dinX stands for the covering dimension. On the set of one-forntts wi
dim Singe < n - 1, collinearity is an equivalence relation (Propositio8)3.

Lemma 6.1. Leta || B be integrable one-forms, wittim Singa < 0. Then for any
Yo € Fo there existyy € ¥ such thatya C yg.

Proor. Let p,q € ., i.e., there exists: [0,1] —» M, s(0) = p, S(1) = g such that
a(§(t)) = 0. Let us show thagg(s(t)) = 0, theny, C y;z.

Supposes(§(t)) # 0 for somet € [0, 1]. Since dimx < 0, by Remark 2.2 for any
small neighbourhoot (t) there exist$’ € U such thats(t’) € Suppe. By Lemma 3.3,
in a small neighbourhood aft’) we haves = f(X)a, thusg(§(t’)) = 0. We obtain
B(&(t)) = 0; a contradiction. m]



ProposiTion 6.2. Let @ || B be integrable one-forms witldim Singe < 0 and
dim Sings < 0. Then7, = F5.

The converse is not trueidore 6 shows two “meridional” forms f| 8 onS? with
different “poles”; howeverf, = 7.

@ B

Ficure 6. Non-closed one-forms f| 8 on M = S?, each one with two singularities; dim Sing=
dim Sings = 0, Suppr # Supps, but¥, = F5 = ¥}, 7 = M.

The condition dim Singr < 0 in Lemma 6.1 and Proposition 6.2 cannot be relaxed
to a higher value; cf. the formg andg in Ficure 7. Note that an example analogous
to 8 can be constructed in any dimensigrwith dim Sings = 1.

a =dy B =x2dy 6 = y>dx

Ficure 7. One-forms on a 2-torukl = T2 (far from the singular set, the cfiients are equal to 1).
Sings = S*; Singd = SY; 7 = 7y = (M)

Lemma 6.3. Leta || B be closed one-forms ardim Singe < n— 2. ThenSinga C
Singp.

Proor. Suppose there existse Singe U Supps. Considery; € 75 such thatx € yg.
By Proposition 4.2y c Singa. Remark 2.2 gives a contradiction. O

In particular, the supports of collinear Morse forms (ctbeme-forms with non-
degenerated singularities) coincidé)]. The condition for the forms to be closed is
important; cf. kGure 3.

Recall that by Proposition 3.6;, = 75 implies« || 5.

Prorosition 6.4. Leta be a closed one-form. Thefy, = 7, impliess || a.
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Proor. Let x € S = S(e,pB). Consider a curvet) € yz € 5, X € S(t). Then
S(t) € 75 = 7. € Fo and by Lemma 5.3 we havg&(t)) = 0. Thus{x = 0} C {ax = 0},

Now we are ready to formulate our main result:

Tueorem 6.5. Let a,B be closed forms with nowhere dense singular sets (cf.
Lemma 2.3). Theft, = 75 iff @ || B

If, moreoverdim Singe < n— 2 anddim Sing3 < n -2, then¥, = 73 iff « || 8 (in
particular, « || 8 impliesSinga = Singpg).

Proor. Let a || B. Consider a leaf, € ¥,. Lets: [0,1] — 7, be a map from
Definition 5.2, so that(5(t)) = 0 for all t € [0, 1]. Then als@(5(t)) = O.

Indeed, suppose aft) € Supps, and thus in a small neighbourhodd= U (s(t))
Suppg, the curvesis transversal to the leaves®j. By Lemma 3.3, on Suppit holds
a = f(X)B8, so we havef(x) = 0 forsn U. Then Lemma 4.1 give§(x) = 0 in U, so
U C Singa; a contradiction. Thug(s(t)) = 0.

We obtairy, C 73 € 75 and vice versa; i.e%, = 7. The converse follows from
Proposition 6.4. Finallyf, = #; follows from Lemma 6.3 and Proposition 3.6. O

Note that?, = ?ﬁ here is not trivially true, as inigure 7, since by Corollary 5.4
in the conditions of the theorem it holds cinx n— 1.

The condition for the forms to be closed is important: isuRe 4, a || 8 but
Fo # Fp in FIGRE 7, F3 = F5 butp J 6. This condition is also important for the
second part of the theorem: incre 3, « || 8 and ¥, = F5, but¥, # 73 because
Singa # Singp.

The condition dim Sin@@ < n— 2 in the second part of Theorem 6.5 is important:
in Ficure 8, « || B are closed forms and therefofg, = fg, but 7, # 73 because
Singa # Singp.

— —\2 —
a=dy B=ydy 6= f(y)dy
Ficure 8. Closed collinear one-forms on a 2-torus: Sing 0, Sing8 = S*, Singd = | x S,

Finally, the condition for the singular sets to be nowheresteis important: in
Ficure 8, where Sing is a band¥, # . Another example isiBure 2, right.
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Theorem 6.5 describes the set of closed one-forms with semalugh singular
sets that define the same foliatign eliminating the requirement of coincidence of
singular sets in Theorem 3.7:

CoroLLaRrY 6.6. Let A be the class of closed one-forms wdiim Singe < n—2. Given
a foliation ¥ = ¥, of a forma € A, the forms from A defining are those collinear
with a.

Similarly, for the clas®\ of closed one-forms with nowhere dense singular set, the
forms fromA defining# = ¥, are those collinear with.

Note that the only property of covering dimension used in msults regarding
dimSinga < n— 2 is Remark 2.2: if dinX < k thenX does not contai®X. This
weaker condition can be used in Lemma 6.3, Theorem 6.5, armll@y 6.6: instead
of dim Singa < n-2 itis enough to require for Singnot to contain a smooth inclusion
of R, This generalises those results to forms with dim Sirgn—1 whose singular

set is just not smooth enough to cont&ftr!, such a® in FiGure 4.

7. Applications of collinearity: foliations of closed one-forms

The notion of collinearity is a useful tool for studying ttegblogy of foliations of
closed one-forms.

Since a foliation defined by a closed one-form has no holonbmihe Reeb local
stability theorem each its compact leaf has a neighbourltoodisting of compact
leaves. It can be explicitly constructed:

Lemma 7.1. Let @ be a closed one-form. Then any compact lgaE #, has a
cylindrical neighbourhood consisting of compact leaves.

Proor. Let U be a neighbourhood of where the form is exacte = df; assume
fl, = 0. For somes > 0 consider a neighbourhodd). = {x € U | |f(X)| < &}. Since
Suppa is open, we can choogesuch thatJ, N Singa = 0. Obviously,y c U,. By
construction,
Ue={Jw=rx(=e)
lyi<e

whereyy = f~1(y) are compact leaves 6f,. O

By choosing a suitable for@ || « one can characterise the topology of the foliation
¥.. For example, if there exists an exact fodrh || @ with Suppd f = Suppe, then the
foliation #, is compactifiable, i.e., for any leafe ¥, the sety U Singa is compact.
Indeed, the foliationfg; = ¥, is defined by levels of the functiof(x), which are
compact.

Farberet al. [4, 5] gave a necessary condition for existence of a compact leaf
in the foliation defined by a so-called transitive Morse foirmterms of the cup-
product: if 7, has a compact leaf, [y] # O, then there exists a closed one-form
B, 0# [B] € HY(M, Z), such that§] — [B] = 0. This is not a criterion; moreover, no
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suficient condition for existing of a compact leaf can be givepunely cohomologous
terms since in any cohomology clagg,[rk @ > 1, there exists a form with minimal
foliation [1]; rk « is the rank of its group of periods (integrals over one-cgkle

We generalise this condition in terms of collinearity to aoitaary closed one-form
and improve it to a criterion:

Tueorem 7.2. Leta be a closed one-form. The following conditions are equiviale
(i) ¥, hasacompactleaf;
(i) There exists a smooth functiorfx) such that
(@ dflla,
(b) Suppae N Suppdf # 0;
(iii) There exists a smooth closed one-fgérauch that

@ Bla,
(b) Suppa N Sup, % 0,
(c) [B] € HY(M, Z).
Given a specifig, f, or g, the other two can be chosen such thgt= constand
[8] = D[y], where D: H,_1(M) — HY(M, Z) is the Poincaré duality map.

Proor. (i) = (ii): Consider the function from Lemma 7.1 defined on a cyioal
neighbourhoog x (-3, §) consisting of compact fieomorphic leaves, and extend it
to a smooth functiorf constant on leaves, such thiats 0 outsidey x (¢, &). Then
Suppe N Suppd f # 0. By Proposition 3.6d f || a.

(i) = (ii)): Considerg =df; [B] = 0.

(iiiy = (i): Since B] € HY(M, Z), the formg defines a map : M — S?,

Fg = 2 JaP

Obviously,F is constant on leaves @ and the critical set of coincides with Sing.
ConsidelFs = F|s: S — S, whereS = Suppe N Supps.

By Sard’s theorem, the maps has a regular valug € S*, and by the implicit
function theoremFg'(y) is a closed codimension-one submanifold. By Corollary 4.3
the setS consists of entire leaves of boffy and 3, so a connected component of
FS'(y) is a compact leaf € 73 N F,. Thus (iii) = (i).

Now, given a specifig, the functionf constructed above satisfiés = const. Let
us construcB such thatf] = D[y].

Construct the functiorf as above; denotd = y x (-¢,¢). Consider a curve
sty c U, t € (—¢,¢), transversal to leaves. Obviously, the forfitX)«a is closed;
denoteA = f_és f(s(t))a(5(t)) dt, which is finite. Letg = —/ﬁf(x)a. This form is closed
and collinear withy; by construction, Sup@ N Supps # 0.

Consider an arbitraryn(— 1)-form. Since Suppg c U and [~ (3(t))dt = 1,

fMG/\ﬁ:fue/\ﬁ:fyi*@f_iﬂ('s(t))dt:fyi*@.
13



wherei : y — M is the inclusion map. This means tha} E D[y] [3, (5.13)].

Given f, the leafy constructed in (ii}= (iii) and (iii) = (i) satisfiesf|, = const;
then a news is constructed as above. Givgnthe leafy constructed as in (i} (i)
and f constructed in (i} (ii) satisfy the conditions. O

Finally, let us show that homological properties of comgdaaves are connected
with the structure of the cup-product: HY(M, Z) x HY(M, Z) — H?(M, Z).

Denote byc(e) the maximum number of homologically independent compact
leaves of#,. This value plays an important role in the theory of Morsenfor
foliations [L4-16]; in particular, in this case

by(M)  [8l],
c(a) + m(e) < {bi(M)/2 [9],
h(M) (9],

where m(e) is the number of minimal components @f, bj(M) is the first non-

commutative Betti numberl], and h(M) is the maximum rank of a subgroup in

H(M, Z) with trivial cup-product | 7], an important characteristic of the manifold.[
For a closed one-form, its rankrk « is the rank of its group of periods:

tka = kg { [a | ze Hy(M)}.

Obviously, 0< rk a < by (M), the first Betti number.

For an arbitrary closed one-form, obvioustfa) < h(M). For forms of the
maximum possible rank for the giveM, a stronger fact holds (shown iiQ] for
Morse forms):

Tueorem 7.3. Assumek a = by(M). Then ¢a) < rkker—.

Proor. Forc(a) = 0 the statement is trivial, so assume there exists a honualthgi
nontrivial compact leafy € %, [y] # 0. By Theorem 7.2, there exists a smooth
closed one-forng ||  such that ] = D[y] € H}(M,Z). Since A a = 0, we have
8] =& [@] = X ai([8] — &) = 0, where—ry, is the cup-product or*(M, R), {&} is a
basis inH(M, Z), and ] = 3 aié;.

Denoteu; = [B] — &; > aiu;i = 0. Since rky = by(M), all a; are independent over
Q. Thus allu; belong to the torsion of?(M, Z), i.e., for some 0# k € Z we have
K[B] — & = 0 for alli; sok[g] € ker—. SinceH(M, Z) has no torsiork[s] # 0.

Now considerc(a) homologically independent compact leavgs. . ., y¢,) and
the corresponding; as above such th#[3;] € ker— for some 0+ K; € Z. Since
the p1l], ..., [yqe] are independent, so arg] = D[yi], and thereforek;[5]; thus
rkker— > c(a). |
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