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ON COLLINEAR CLOSED ONE-FORMS

IRINA GELBUKH2∨

Abstract

We study one-forms with zero wedge-product, which we callcollinear, and their foliations. We
characterise the set of forms that define a given foliation, with special attention to closed forms and
forms with small singular sets. We apply the notion of collinearity to give a criterion for existence of a
compact leaf and to study homological properties of compact leaves.
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1. Introduction and statement of the main results

We consider a closed orientedn-dimensional manifoldM and a smooth one-formα on
it with the singular set Singα. This form defines on Suppα = M \ Singα a foliation
Fα, which can be extended to the wholeM as a singular foliationFα (Definition 5.2).
We shall study the conditions for other formsβ to define the same foliation:Fβ = Fα
orFβ = Fα.

We call formsα, β collinear, denoted byα ‖ β, if α ∧ β = 0 [10]. Collinear
one-forms appear in many problems of theoretical physics, for example, in general
relativity: type I vacuum solutions with aligned Papapetrou fields [6] or triplet
ansatz [2, 11]. Ranks (of group of the periods) of collinear Morse forms (closed one-
forms with non-degenerate singularities) have been studied in [10].

On the intersection of their supports, collinear forms are proportional (Lemma 3.3).
Moreover, on this set they share important properties—in particular, integrability
(Proposition 3.6) and, if they are integrable, the foliation. Thus the set of the forms that
define the same foliationFα are those that (obviously) have the corresponding support
and are collinear withα (Theorem 3.7).

The relation of collinearity is reflexive and symmetric, but generally not transitive
(F 1). For Morse forms, however, collinearity is an equivalence relation [10]; we
generalise this fact to one-forms with nowhere dense singular sets (Proposition 3.8). In
this case, integrability of the form is a class invariant and the singular foliation uniquely
identifies integrable classes (i.e., it is a class invariant different for different classes).
Similarly, for one-forms with a common support, collinearity is an equivalence relation
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(Corollary 3.5), integrability is a class invariant, and the foliation uniquely identifies
integrable classes.

Closed forms, i.e.,dα = 0, are an important class of integrable one-forms. They
are especially interesting because they allow for using cohomology techniques. In
particular,α ∧ β = 0 implies [α] _ [β] = 0, where_ : H1(M,Z) × H1(M,Z) →
H2(M,Z) is the cup-product and [α] is the cohomology class; this is used in our study
of foliations defined by closed forms (Theorem 7.3). In addition, closed one-forms
define an important class of foliations—foliations withoutholonomy; moreover, any
codimension-one foliation without holonomy is topologically equivalent to a foliation
defined by a closed one-form [19]. For closed one-forms, singular foliationFα is a
good approximation of the foliationFα (Lemma 5.3 to Lemma 5.6).

For closed collinear one-forms, the intersection of their supports consists of entire
leaves of both forms (Corollary 4.3). In particular, no leafof one form can intersect
the boundary of the support of the other form (Proposition 4.2).

Our main result states that for closed one-forms with small enough singular sets,
their foliations coincide iff the forms are collinear (Theorem 6.5); this has been known
for Morse forms [10]. Note that, unlike Theorem 3.7, coincidence of supports isno
longer required but is instead guaranteed by the conditions.

Namely, for closed one-forms with at most (n − 2)-dimensional singular sets, it
holdsFα = Fβ iff α ‖ β (Theorem 6.5); note that for such formsα ‖ β implies
Suppα = Suppβ. We mean here the topological (covering) dimension (Definition 2.1),
since Singα is generically not a submanifold.

The condition on Singα can be relaxed: for closed one-forms with at most (n− 1)-
dimensional, i.e., nowhere dense (Lemma 2.3), singular sets, it holdsFα = Fβ iff α ‖ β
(Theorem 6.5). Further generalisations include: for (not necessarily closed) one-forms
with dim Singα ≤ 0, α ‖ β impliesFα = Fβ. (Proposition 6.2); for closed one-forms
(irrespective of their singular sets)Fα = Fβ impliesα ‖ β (Proposition 6.4).

The notion of collinearity is useful for the study of foliations defined by closed
one-forms, as can be illustrated by the following examples.

Farberet al.[4, 5] gave a necessary condition for existence of a compact leaf in the
foliation defined by a so-called transitive Morse form, in terms of the cup-product. We
generalise this condition in terms of collinearity to an arbitrary closed one-form and
improve it to a criterion (Theorem 7.2).

In [10], it was shown that the topology of a foliation defined by a Morse form of
the maximum possible rank for the givenM, rkα = b1(M) (the first Betti number) is
connected with the structure of the cup-product:c(α) ≤ rk ker_, wherec(α) is the
maximum number of homologically independent compact leaves ofFα, an important
value in the theory of foliations defined by Morse forms [8, 9]. We use the notion of
collinearity to generalise this fact to arbitrary closed one-forms (Theorem 7.3).

The paper is organised as follows. In Section 2 we give various conditions for
Singα to be small, in terms of covering dimension. In Section 3 we introduce collinear
forms and consider some their properties. In Section 4 we study the supports of closed
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collinear one-forms. In Section 5 we define the notion of singular foliation and show
that it is well-behaved for closed forms. In Section 6 we prove our main result on the
characterisation of the set of closed forms with small supports that define the same
foliation, as an equivalence class of collinear forms. Finally, in Section 7 we use the
notion of collinearity to study homological properties of compact leaves of a foliation
defined by a closed one-form.

2. Singular set

We consider smooth one-forms on a closed orientedn-dimensional manifoldM.
One-formα is a smooth section of the cotangent bundle ofM, i.e., it assigns to each
point x ∈ M a linear functionalαx : TxM → R. Denote

Singα = {x ∈ M | αx = 0}.

Obviously, Singα ⊆ M is closed and the support Suppα = M \ Singα is open.
Generically, Singα is not a submanifold.

To characterise a subset ofM that is not necessarily a submanifold, we use the
topological (covering) dimension:

D 2.1 ([12]). Thecovering dimensiondimX of a topological spaceX is the
minimum valuen such that every open cover ofX has an open refinement in which no
point is included in more thann+ 1 elements.

For instance, dim∅ = −1; the covering dimension of a simplicial complex is the
maximum dimension of its simplices; dim(S2∨S1) = 2. If Y ⊆ X, then dimY ≤ dimX.
Covering dimension of a manifold coincides with its conventional dimension [12,
Corollary 1 of Theorem IV.3]. In particular:

R 2.2. If X ⊆ M andX ⊇ iRk (i is an inclusion), then dimX ≥ k.

For X ⊆ M, dimX ≤ n− 1 iff interior int(X) = ∅ [12, Theorem IV.3]; in particular,
the covering dimension of a leaf of a foliation isn− 1. If dim X ≤ n− 2 thenX does
not locally divideM [12, Theorem IV.4].

Thus dim Singα ≤ n = dim M; obviously,∂Suppα ⊆ Singα = M \ Suppα.

L 2.3. For a one-formα, the following conditions are equivalent:

(i) Singα is nowhere dense in M;
(ii) Suppα is dense in M;
(iii) ∂Suppα = Singα;
(iv) int(Singα) = ∅;
(v) dim Singα ≤ n− 1.

P. (ii) ⇔ (iii): Y ⊆ X is open and dense iff ∂Y = YC, the complement.
(iii) ⇔ (iv): int(Y) = ∅ iff Y = ∂(YC). (iv) ⇔ (v): dimY < dimX iff int(Y) = ∅ [12,
Theorem IV.3]. (iv)⇔ (i): Singα is closed. �
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3. Collinear one-forms

D 3.1. Two differential formsα, β are calledcollinear if α∧β = 0; we denote
this asα ‖ β.

The term is motivated by Lemma 3.3 below.

R 3.2. The set ofx ∈ M at whichα ‖ β is closed.

DenoteS(α, β) = Suppα ∩ Suppβ; it is open. The collinearity relation is reflexive
and symmetric but not necessarily transitive: obviously,S(α, β) = ∅ impliesα ‖ β, so
any two formsα, β are connected via two formsω j such thatα ‖ ω1, ω1 ‖ ω2, and
ω2 ‖ β even ifα ∧ β , 0; see F 1; cf. [18]. Therefore collinearity is generally not
an equivalence relation. In the sequel we, however, shall consider various conditions
under which collinearity is an equivalence.

    

α = dx ω1 = f (x, y) dx ω2 = g(x, y) dy β = dy

F 1. Chain of collinear forms on a 2-torus. Note thatS(ω1, ω2) = ∅; f andg are bump functions.

L 3.3. Letα, β be one-forms. The following conditions are equivalent:

(i) α ‖ β,
(ii) α = f (x) β onSuppβ,
(iii) β = g(x)α onSuppα.

On S(α, β), the functions f(x), g(x) are smooth and non-vanishing, with f(x) g(x) = 1.

P. (ii) or (iii) ⇒ (i) is obvious.
(i) ⇒ (ii) and similarly (iii): Consider on Suppβ a smooth vector fieldξ with non-

vanishingβ(ξx). Choose

f (x) =
α(ξx)
β(ξx)

,

which, by collinearity, does not depend on the choice ofξ: indeed, for any other such
field ξ′ collinearity gives

(α ∧ β)(ξx, ξ
′
x) = α(ξx)β(ξ

′
x) − α(ξ

′
x)β(ξx) = 0.

Thusα = f (x) β on Suppβ; in addition, f (x) , 0 onS(α, β). �
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So onS(α, β) collinear forms are proportional; thus the term. However,this does
not necessarily hold on the wholeM: for instance, any two forms with non-intersecting
supports are collinear, but not proportional.

C 3.4. OnSuppβ, α ‖ β andβ ‖ γ implyα ‖ γ.

C 3.5. Consider a set A of one-forms on M such that S(α, β) = S ⊆ M is the
same for anyα, β ∈ A; for instance,Suppα = S for anyα ∈ A. Then the collinearity
is an equivalence relation on A.

On S(α, β), collinear forms share important properties. Consider anintegrable
form α; it defines a foliationFα on Suppα.

P 3.6. Letα be an integrable one-form. Then for a one-formβ it holdsβ ‖ α
iff on S= S(α, β) it is also integrable andFβ|S = Fα|S.

By F |S we understand a foliation ofS whose leaves are path-connected compo-
nents ofγ ∩ S, γ ∈ F .

P. Let α ‖ β. By the Frobenius theorem,α is integrable iff α ∧ dα = 0. By
Lemma 3.3, onS it holdsβ = f (x)α, soβ ∧ dβ = 0 and thusβ is also integrable. The
foliations coincide since{α = 0} ≡ { fα = 0}.

Assume nowFα = Fβ onS(α, β). OutsideS(α, β) the forms are obviously collinear.
Considerx ∈ S(α, β) andξx, ηx ∈ TxM = 〈nx,Txγ〉, whereγ ∈ Fα is the leaf that
containsx andnx ∈ TxM \ Txγ; ξx = anx + ξ

′
x, ηx = bnx + η

′
x for somea, b ∈ R and

ξ′x, η
′
x ∈ Txγ. Sinceα|Txγ = β|Txγ = 0, we have

(α ∧ β)(ξx, ηx) = α(anx)β(bnx) − α(bnx)β(anx) = 0,

i.e. α ‖ β. �

Therefore, collinear forms are either both integrable or both non-integrable on
S(α, β), i.e., integrability onS is a class invariant under the equivalence relation from
Corollary 3.5. Integrable one-formsα, β are collinear iff Fα = Fβ on S(α, β), i.e.,F |S
uniquely identifies an integrable class under this equivalence relation.

We have obtained a characterisation of the set of forms defining a given foliationF
as the equivalence class, under collinearity relation, of forms with the corresponding
support. In particular:

T 3.7. Given a foliationF = Fα of a one-formα, the forms definingF are
one-forms collinear withα and having the same support.

The latter condition automatically holds—and thus can be omitted from Theo-
rem 3.7—in the class of closed forms with small enough singular sets; this is for-
mulated below as part of Theorem 6.5.

Forms with small singular sets give another important classof forms on which
collinearity is an equivalence relation:
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P 3.8. On the set of one-forms with nowhere dense singular sets (cf.
Lemma 2.3), collinearity is an equivalence relation.

P. It is sufficient to prove transitivity. Supposeα ‖ β andβ ‖ γ, but α 6 ‖ γ at
x ∈ M and thus, by Remark 3.2, on some openU , ∅. By Corollary 3.4,U ⊆ Singβ;
a contradiction. �

In this case, integrability on the wholeM is a class invariant (by Proposition 3.6 and
the fact thatα∧dα is continuous) but the foliation is not, as can be seen in F 3. For
closed such forms, however, the singular foliation introduced below in Definition 5.2
is a class invariant uniquely identifying an equivalence class. This is also formulated
below as part of the same Theorem 6.5.

4. Supports of closed collinear one-forms

In the sequel we consider an important class of integrable forms: closed one-forms.
Properties of the supports of closed collinear one-forms prove to be connected with
their foliations.

L 4.1. Let α, β be closed one-forms andα = f (x) β on Suppβ. Then f(x) is
constant on leaves ofFβ.

This follows by direct calculation from the equationdα = d f ∧ β = 0.
By Proposition 3.6, leaves of collinear integrable one-forms α, β coincide on

S = S(α, β), i.e.,Fα|S = Fβ|S. The following proposition shows that if both forms
are closed, then leaves of one form cannot intersect the boundary of the support of the
other form; see F 2.

 

Suppα Suppβ Suppα Suppβ

F 2. Left: this is possible only for non-closed collinear forms; right: foliations of closed collinear
forms.

P 4.2. Let α, β be closed collinear one-forms andγα ∈ Fα. Thenγα ∩
Suppβ , ∅ impliesγα ⊂ Suppβ and moreoverγα ∈ Fβ (and similarly forSingβ).
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P. By Lemma 3.3, on Suppα it holds β = f (x)α. Let γα ∩ Suppβ , ∅. If
γα 1 Suppβ, then there existsx0 ∈ γα ∩Singβ, so f (x0) = 0. By Lemma 4.1, we have
f (x) = 0 onγα, i.e. for all x ∈ γα it holdsβx = 0, thusγα ⊂ Singβ; a contradiction.
By Proposition 3.6,γα ∈ Fβ. �

The condition for the forms to be closed is important. Indeed, on a torusM = T2

considerα = dy, β = (x2 + y2) dy locally (while far from the singularity, assume
this coefficient to be 1); see F 3. Then Suppα = M, Suppβ = M \ {0};
γ = {y = 0} ∈ Fα intersects both Suppβ and Singβ = {0}.

  

α = dy β = (x2 + y2) dy

F 3. One-forms on a 2-torus (far from the singularity, the coefficient is assumed to be 1).

C 4.3. Let α, β be closed collinear one-forms;γα ∈ Fα, γβ ∈ Fβ. Then
γα ∩ γβ , ∅ impliesγα = γβ. In particular,

S(α, β) =
⋃

γ∈Fα∩Fβ

γ.

Indeed, by Proposition 4.2,γα, γβ ⊂ S(α, β), then by Proposition 3.6,γα = γβ.
In other words, leaves ofα andβ coincide if intersect, and the intersection of their

supports consists of entire leaves of both forms.

5. Singular foliation of a closed form

Let α be an integrable one-form. Its foliation is defined only on Suppα, namely:

R 5.1. A foliationFα is a decomposition of Suppα into leaves: two pointsp, q ∈
Suppα belong to the same leafγ iff there exists a smooth paths: [0, 1] → Suppα,
s(0) = p, s(1) = q, such thatα(ṡ(t)) ≡ 0, t , 0, 1.

This notion can be extended to the wholeM to define a so-called singular foliation.
In [4], singular foliation for Morse forms (their singular sets are finite) is defined as in
Remark 5.1 by substitutingM for Suppα. For arbitrary integrable forms we, however,
prefer to relax the smoothness condition:

D 5.2. A singular foliationFα is a decomposition ofM into leaves: two
pointsp, q ∈ M belong to the same leaf̃γ iff there exists a continuous paths: [0, 1]→
M, s(0) = p, s(1) = q, such that ons−1(Suppα) \ {0, 1} it is differentiable and
α(ṡ(t)) ≡ 0.
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In F 4, Fα = Fα; Fβ = {̃γ}, γ̃ = M; andFζ = {̃γ1, γ̃2}, γ̃1 = S1. With
the relaxed smoothness condition as in Definition 5.2, we haveFθ = Fβ, while if we
required the path to be smooth onM, we would haveFθ = Fα, which is, perhaps, a
matter of personal taste.

   

 

 

α = dy β = x2 dy θ = fW(x, y) dy ζ = fS(x, y) dy

F 4. Smooth integrable one-forms on a 2-torusM = T2 (the coefficients are assumed to be 1 far
from the singular set). Singθ is the graph of the Weierstrass function, which is continuous but nowhere
differentiable. As a closed subset ofM, it is the set of zeros of a smooth functionfW [13, Theorem 1.5
ff.]. Note that this path-connected set does not contain any non-trivial differentiable paths: [0, 1] → M.
The function fS is obtained similarly from the closed topologist’s sine curve; it is connected but not

path-connected.

For anyγ ∈ Fα, if γ∩ γ̃ , ∅, thenγ ⊆ γ̃, i.e., a singular leaf ofFα consists of entire
leaves ofFα and path-connected components of Singα.

Unlike leavesγ of a usual foliationF , which have the same dimension dimγ =
n− 1, leaves̃γ of a singular foliationF can have different dimensions 0≤ dim γ̃ ≤ n.
For instance, a center singularity is a 0-dimensional singular leaf; if int(Singα) , ∅,
then there exists̃γ ∈ Fα with dim γ̃ = n (cf. Lemma 2.3). By Remark 5.1, if
dim γ̃ , n−1, theñγ∩Singα , ∅; in particular, dim̃γ ≤ n−2 implies that̃γ ⊆ Singα
is a path-connected component of Singα.

The notion of singular foliation as defined by Definition 5.2,while well-defined, is
rather counter-intuitive for non-closed forms. As seen in F 4, for a leaf̃γ ∈ Fα it
is possible that dim(̃γ∩Suppα) = n or eveñγ = M with Suppα , ∅. Thus for a curve
s(t) ⊆ γ̃ it is possible thatα(ṡ(t)) , 0. Two non-collinear forms with Suppα = Suppβ
can haveFα = Fβ, as in F 5.

For closed forms, however, the notion ofFα is quite intuitive and is a good
approximation ofFα, as we show in the rest of this section. The formβ in F 4
shows that closedness is important in Lemma 5.3 to Lemma 5.6.

L 5.3. Let α be a closed one-form,̃γ ∈ Fα, and s(t) ⊆ γ̃ a differentiable curve.
Thenα(ṡ(t)) ≡ 0.

P. ConsiderF(x) =
∫ x

0
α(ṡ(t)) dt. Sinces ⊆ γ̃, for any x ∈ [0, 1] there exists

a pathux : [0, 1] → M connectings(x) ands(0), such that
∫ 1

0
α(u̇x(t)) dt = 0. Thus

F(x) ∈ P, whereP = 〈
∫
z
α | z ∈ H1(M)〉Z is the group of periods. SinceP is finitely
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α = f (x, y) dx β = f (x, y) dy

F 5. Non-closed one-forms on a 2-torusM = T2; f is a bump function. Suppα = Suppβ and
Fα = Fβ = {̃γ}, γ̃ = M, butα 6 ‖ β.

generated and thus at most countable whileF is continuous, we haveF ≡ const and
thusα(ṡ(t)) ≡ 0. �

C 5.4. Letα be a closed one-form and̃γ ∈ Fα. Thenint(̃γ) ⊆ Singα.

C 5.5. For a closed one-form,Singα is nowhere dense iff dim γ̃ ≤ n− 1 for
anyγ̃ ∈ Fα.

L 5.6. For a closed form,Fα|Suppα = Fα.

By F |S we understand, again, a decomposition ofS into path-connected compo-
nents of̃γ ∩ S, γ̃ ∈ F .

P. Consider a path-connected componentX ⊆ γ̃ ∩ Suppα andx ∈ X. Thenx ∈ γ
for someγ ∈ Fα, soγ ⊆ X. For anyx′ ∈ X \ x there exists a curves(t) ⊆ X ⊆ γ̃,
s(0) = x, s(1) = x′. By Lemma 5.3,α(ṡ(t)) = 0; by Remark 5.1,x′ ∈ γ. Thus
X = γ. �

6. Collinear forms with small singular sets

We shall show that for closed one-forms with small enough singular sets, collinear-
ity implies coincidence of their singular foliations or, incase of even smaller singular
sets, coincidence of their (conventional) foliations and,in particular, their supports.

Recall that dimX stands for the covering dimension. On the set of one-forms with
dim Singα ≤ n− 1, collinearity is an equivalence relation (Proposition 3.8).

L 6.1. Let α ‖ β be integrable one-forms, withdim Singα ≤ 0. Then for any
γ̃α ∈ Fα there exists̃γβ ∈ Fβ such that̃γa ⊆ γ̃β.

P. Let p, q ∈ γ̃α, i.e., there existss: [0, 1] → M, s(0) = p, s(1) = q such that
α(ṡ(t)) = 0. Let us show thatβ(ṡ(t)) = 0, theñγα ⊆ γ̃β.

Supposeβ(ṡ(t)) , 0 for somet ∈ [0, 1]. Since dimα ≤ 0, by Remark 2.2 for any
small neighbourhoodU(t) there existst′ ∈ U such thats(t′) ∈ Suppα. By Lemma 3.3,
in a small neighbourhood ofs(t′) we haveβ = f (x)α, thusβ(ṡ(t′)) = 0. We obtain
β(ṡ(t)) = 0; a contradiction. �
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P 6.2. Let α ‖ β be integrable one-forms withdim Singα ≤ 0 and
dim Singβ ≤ 0. ThenFα = Fβ.

The converse is not true: F 6 shows two “meridional” formsα 6 ‖ β onS2 with
different “poles”; however,Fα = Fβ.

 

α β

F 6. Non-closed one-formsα 6 ‖ β on M = S2, each one with two singularities; dim Singα =
dim Singβ = 0, Suppα , Suppβ, butFα = Fβ = {̃γ}, γ̃ = M.

The condition dim Singα ≤ 0 in Lemma 6.1 and Proposition 6.2 cannot be relaxed
to a higher value; cf. the formsα andβ in F 7. Note that an example analogous
to β can be constructed in any dimensionn, with dim Singβ = 1.

  

 

 

 

α = dy β = x2 dy θ = y2 dx

F 7. One-forms on a 2-torusM = T2 (far from the singular set, the coefficients are equal to 1).
Singβ = S1; Singθ = S1; Fβ = Fθ = {M}.

L 6.3. Let α ‖ β be closed one-forms anddim Singα ≤ n − 2. ThenSingα ⊆
Singβ.

P. Suppose there existsx ∈ Singα ∪ Suppβ. Considerγβ ∈ Fβ such thatx ∈ γβ.
By Proposition 4.2,γβ ⊂ Singα. Remark 2.2 gives a contradiction. �

In particular, the supports of collinear Morse forms (closed one-forms with non-
degenerated singularities) coincide [10]. The condition for the forms to be closed is
important; cf. F 3.

Recall that by Proposition 3.6,Fα = Fβ impliesα ‖ β.

P 6.4. Letα be a closed one-form. ThenFβ = Fα impliesβ ‖ α.
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P. Let x ∈ S = S(α, β). Consider a curves(t) ⊆ γβ ∈ Fβ, x ∈ s(t). Then
s(t) ⊆ γ̃β = γ̃α ∈ Fα and by Lemma 5.3 we haveα(ṡ(t)) = 0. Thus{βx = 0} ⊆ {αx = 0},
then{βx = 0} = {αx = 0} andβx ‖ αx. �

Now we are ready to formulate our main result:

T 6.5. Let α, β be closed forms with nowhere dense singular sets (cf.
Lemma 2.3). ThenFα = Fβ iff α ‖ β.

If, moreover,dim Singα ≤ n− 2 anddim Singβ ≤ n− 2, thenFα = Fβ iff α ‖ β (in
particular,α ‖ β impliesSingα = Singβ).

P. Let α ‖ β. Consider a leaf̃γα ∈ Fα. Let s: [0, 1] → γ̃α be a map from
Definition 5.2, so thatα(ṡ(t)) = 0 for all t ∈ [0, 1]. Then alsoβ(ṡ(t)) = 0.

Indeed, suppose ats(t) ∈ Suppβ, and thus in a small neighbourhoodU = U(s(t)) ⊂
Suppβ, the curves is transversal to the leaves ofFβ. By Lemma 3.3, on Suppβ it holds
α = f (x)β, so we havef (x) = 0 for s∩ U. Then Lemma 4.1 givesf (x) ≡ 0 in U, so
U ⊆ Singα; a contradiction. Thusβ(ṡ(t)) = 0.

We obtaiñγα ⊆ γ̃β ∈ Fβ and vice versa; i.e.,Fα = Fβ. The converse follows from
Proposition 6.4. Finally,Fα = Fβ follows from Lemma 6.3 and Proposition 3.6. �

Note thatFα = Fβ here is not trivially true, as in F 7, since by Corollary 5.4
in the conditions of the theorem it holds dim̃γ ≤ n− 1.

The condition for the forms to be closed is important: in F 4, α ‖ β but
Fα , Fβ; in F 7, Fβ = Fθ but β 6 ‖ θ. This condition is also important for the
second part of the theorem: in F 3, α ‖ β andFα = Fβ, butFα , Fβ because
Singα , Singβ.

The condition dim Singβ ≤ n− 2 in the second part of Theorem 6.5 is important:
in F 8, α ‖ β are closed forms and thereforeFα = Fβ, but Fα , Fβ because
Singα , Singβ.

  

 

  

α = dy β = y2 dy θ = f (y) dy

F 8. Closed collinear one-forms on a 2-torus: Singα = ∅, Singβ = S1, Singθ = I × S1.

Finally, the condition for the singular sets to be nowhere dense is important: in
F 8, where Singθ is a band,Fα , Fθ. Another example is F 2, right.
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Theorem 6.5 describes the set of closed one-forms with smallenough singular
sets that define the same foliationF , eliminating the requirement of coincidence of
singular sets in Theorem 3.7:

C 6.6. Let A be the class of closed one-forms withdim Singα ≤ n−2. Given
a foliationF = Fα of a formα ∈ A, the forms from A definingF are those collinear
with α.

Similarly, for the classA of closed one-forms with nowhere dense singular set, the
forms fromA definingF = Fα are those collinear withα.

Note that the only property of covering dimension used in ourresults regarding
dim Singα ≤ n − 2 is Remark 2.2: if dimX ≤ k thenX does not containRk. This
weaker condition can be used in Lemma 6.3, Theorem 6.5, and Corollary 6.6: instead
of dim Singα ≤ n−2 it is enough to require for Singα not to contain a smooth inclusion
of Rn−1. This generalises those results to forms with dim Singα = n−1 whose singular
set is just not smooth enough to containRn−1, such asθ in F 4.

7. Applications of collinearity: foliations of closed one-forms

The notion of collinearity is a useful tool for studying the topology of foliations of
closed one-forms.

Since a foliation defined by a closed one-form has no holonomy, by the Reeb local
stability theorem each its compact leaf has a neighbourhoodconsisting of compact
leaves. It can be explicitly constructed:

L 7.1. Let α be a closed one-form. Then any compact leafγ ∈ Fα has a
cylindrical neighbourhood consisting of compact leaves.

P. Let U be a neighbourhood ofγ where the form is exact:α = d f ; assume
f |γ = 0. For someε > 0 consider a neighbourhoodUε = {x ∈ U | | f (x)| < ε}. Since
Suppα is open, we can chooseε such thatUε ∩ Singα = ∅. Obviously,γ ⊂ Uε. By
construction,

Uε =
⋃

|y|<ε

γy ' γ × (−ε, ε),

whereγy = f −1(y) are compact leaves ofFα. �

By choosing a suitable formβ ‖ α one can characterise the topology of the foliation
Fα. For example, if there exists an exact formd f ‖ α with Suppd f = Suppα, then the
foliation Fα is compactifiable, i.e., for any leafγ ∈ Fα the setγ ∪ Singα is compact.
Indeed, the foliationFd f = Fα is defined by levels of the functionf (x), which are
compact.

Farberet al. [4, 5] gave a necessary condition for existence of a compact leaf
in the foliation defined by a so-called transitive Morse formin terms of the cup-
product: if Fα has a compact leafγ, [γ] , 0, then there exists a closed one-form
β, 0 , [β] ∈ H1(M,Z), such that [α] _ [β] = 0. This is not a criterion; moreover, no
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sufficient condition for existing of a compact leaf can be given inpurely cohomologous
terms since in any cohomology class [α], rk α > 1, there exists a form with minimal
foliation [1]; rk α is the rank of its group of periods (integrals over one-cycles).

We generalise this condition in terms of collinearity to an arbitrary closed one-form
and improve it to a criterion:

T 7.2. Letα be a closed one-form. The following conditions are equivalent:

(i) Fα has a compact leafγ;
(ii) There exists a smooth function f(x) such that

(a) d f ‖ α,
(b) Suppα ∩ Suppd f , ∅;

(iii) There exists a smooth closed one-formβ such that

(a) β ‖ α,
(b) Suppα ∩ Suppβ , ∅,
(c) [β] ∈ H1(M,Z).

Given a specificγ, f , or β, the other two can be chosen such that f|γ = constand
[β] = D[γ], where D: Hn−1(M)→ H1(M,Z) is the Poincaré duality map.

P. (i) ⇒ (ii): Consider the function from Lemma 7.1 defined on a cylindrical
neighbourhoodγ × (− ε2 ,

ε
2) consisting of compact diffeomorphic leaves, and extend it

to a smooth functionf constant on leaves, such thatf ≡ 0 outsideγ × (−ε, ε). Then
Suppα ∩ Suppd f , ∅. By Proposition 3.6,d f ‖ α.

(ii) ⇒ (iii): Considerβ = d f ; [β] = 0.
(iii) ⇒ (i): Since [β] ∈ H1(M,Z), the formβ defines a mapF : M → S1,

F(x) = e
2πi
∫ x

x0
β
.

Obviously,F is constant on leaves ofFβ and the critical set ofF coincides with Singβ.
ConsiderFS = F |S : S→ S1, whereS = Suppα ∩ Suppβ.

By Sard’s theorem, the mapFS has a regular valuey ∈ S1, and by the implicit
function theorem,F−1

S (y) is a closed codimension-one submanifold. By Corollary 4.3,
the setS consists of entire leaves of bothFα andFβ, so a connected component of
F−1

S (y) is a compact leafγ ∈ Fβ ∩ Fα. Thus (iii)⇒ (i).
Now, given a specificγ, the functionf constructed above satisfiesf |γ = const. Let

us constructβ such that [β] = D[γ].
Construct the functionf as above; denoteU = γ × (−ε, ε). Consider a curve

s(t) ⊂ U, t ∈ (−ε, ε), transversal to leaves. Obviously, the formf (x)α is closed;
denoteA =

∫ ε
−ε

f (s(t))α(ṡ(t)) dt, which is finite. Letβ = 1
A f (x)α. This form is closed

and collinear withα; by construction, Suppα ∩ Suppβ , ∅.
Consider an arbitrary (n− 1)-formθ. Since Suppβ ⊆ U and

∫ ε
−ε
β(ṡ(t))dt = 1,

∫

M
θ ∧ β =

∫

U
θ ∧ β =

∫

γ

i∗θ
∫ ε

−ε

β(ṡ(t))dt =
∫

γ

i∗θ.
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wherei : γ ↪→ M is the inclusion map. This means that [β] = D[γ] [3, (5.13)].
Given f , the leafγ constructed in (ii)⇒ (iii) and (iii) ⇒ (i) satisfiesf |γ = const;

then a newβ is constructed as above. Givenβ, the leafγ constructed as in (iii)⇒ (i)
and f constructed in (i)⇒ (ii) satisfy the conditions. �

Finally, let us show that homological properties of compactleaves are connected
with the structure of the cup-product_ : H1(M,Z) × H1(M,Z)→ H2(M,Z).

Denote byc(α) the maximum number of homologically independent compact
leaves ofFα. This value plays an important role in the theory of Morse form
foliations [14–16]; in particular, in this case

c(α) +m(α) ≤



b′1(M) [8],

b1(M)/2 [9],

h(M) [9],

wherem(α) is the number of minimal components ofFα, b′1(M) is the first non-
commutative Betti number [1], and h(M) is the maximum rank of a subgroup in
H1(M,Z) with trivial cup-product [17], an important characteristic of the manifold [7].

For a closed one-formα, its rank rkα is the rank of its group of periods:

rkα = rkQ
{∫

z
α | z ∈ H1(M)

}
.

Obviously, 0≤ rkα ≤ b1(M), the first Betti number.
For an arbitrary closed one-form, obviously,c(α) ≤ h(M). For forms of the

maximum possible rank for the givenM, a stronger fact holds (shown in [10] for
Morse forms):

T 7.3. Assumerkα = b1(M). Then c(α) ≤ rk ker_.

P. For c(α) = 0 the statement is trivial, so assume there exists a homologically
nontrivial compact leafγ ∈ Fα, [γ] , 0. By Theorem 7.2, there exists a smooth
closed one-formβ ‖ α such that [β] = D[γ] ∈ H1(M,Z). Sinceβ ∧ α = 0, we have
[β] _R [α] =

∑
αi([β] _ ξi) = 0, where_R is the cup-product onH1(M,R), {ξi} is a

basis inH1(M,Z), and [α] =
∑
αiξi .

Denoteui = [β] _ ξi ;
∑
αiui = 0. Since rkα = b1(M), all αi are independent over

Q. Thus allui belong to the torsion ofH2(M,Z), i.e., for some 0, k ∈ Z we have
k[β] _ ξi = 0 for all i; sok[β] ∈ ker_. SinceH1(M,Z) has no torsion,k[β] , 0.

Now considerc(α) homologically independent compact leavesγ1, . . . , γc(α) and
the correspondingβi as above such thatki [βi ] ∈ ker_ for some 0, Ki ∈ Z. Since
the [γ1], . . . , [γc(α)] are independent, so are [βi ] = D[γi ], and thereforeki [βi ]; thus
rk ker_ ≥ c(α). �
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