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On compact leaves of a Morse form foliation

By I. Gelbukh

Abstract. On a compact oriented manifold without boundary, we consider a
closed 1-form with singularities of Morse type, called Morse form. We give criteria
for the foliation defined by this form to have a compact leaf, to have k& homologically
independent compact leaves, and to have no minimal components.

1. Introduction and announce of results

Consider a compact oriented connected smooth n-dimensional manifold M
without boundary. On M, consider a smooth differential 1-form w that is closed,
i.e., dw = 0. By the Poincaré lemma, it is locally the differential of a function:
w=df.

In this paper, we assume f to be a Morse function; then w is called a Morse
form. By Morse functions we mean smooth functions with non-degenerate singu-
larities. They are generic (typical) smooth functions: their set is open and dense
in the space of smooth functions [7]. Likewise, Morse forms are generic (typical)
closed 1-forms: their set is open and dense in the space of all closed 1-forms on
M.

Let w be a Morse form on M. The set of its singularities Singw = {z € M |
wy = 0} is finite. On M \ Singw the form w defines a foliation F,, constructed as
follows: For any « € M \ Singw, the equation {w,(§) = 0} defines a distribution
of the tangent bundle T, M. Since w is closed, this distribution is integrable; its
integral surfaces are leaves of F,,.
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A foliation is a way of slicing the manifold into disjoint submanifolds (called
leaves) of lower dimension, in our case the dimension n — 1. This notion is widely
used in physics. For example, the phase space of a mechanical system is foliated
by its energy levels. Foliations of space-time into three-dimensional space-like
hypersurfaces have been found to completely characterize the topology of space-
time, the singularities describing the topological structure of the gravitational
singularities [10].

A foliation F,, has three types of leaves: compact, non-compact compacti-
fiable and non-compact non-compactifiable. If a leaf  is compactified by Sing w,
i.e., 7y USingw is compact, then it is called compactifiable, otherwise it is called
non-compactifiable. In particular, compact leaves are compactifiable. A foliation
is called compactifiable if it has only compactifiable leaves, i.e., if it has no minimal
components (areas covered by non-compactifiable leaves).

Existence of compact leaves and existence of non-compactifiable leaves in a
given foliation are classical problems of the foliation theory. We consider both
these problems for a Morse form foliation.

Denote by H, C H,_1(M) a group generated by all compact leaves of F,,
and by H C H, a subgroup of all z € H, such that z - ker[w] = 0, where - is
the cycle intersection and [w] : H1(M) — R the integration map. We denote
rkw = rkg im[w].

Melnikova [9] has shown that on a two-dimensional manifold, a foliation F, is
compactifiable iff rk’'H > rkw — 1. We generalize this fact to arbitrary dimension
and give a stronger formulation: F,, is compactifiable iff rk H = rkw (Theorem 8).
In Theorem 8 we also show that rk’H < rkw, but rkH # rkw — 1.

Farber et al. [2, 3] gave a necessary condition for existence of a compact leave
in the foliation defined by a so-called transitive Morse form. We show that this
condition is not a criterion. Then we generalize it to arbitrary (not necessarily
transitive) Morse forms and improve it to a criterion.

For this, we introduce the notion of collinearity of forms: we call a (not
necessarily Morse) smooth closed 1-form « collinear with w if @ Aw = 0; foliations
of collinear forms share entire leaves (Proposition 14). We give a criterion for
existence of compact leaves: F,, has a compact leaf iff there exists a form a # 0
collinear with w such that [a] € H'(M,Z) (Theorem 16); what is more, F,
has k£ homologically independent compact leaves iff there exist & cohomologically
independent such forms (Theorem 18).

Finally, we give a condition for compactifiability of F, in terms of existence
of a sufficient number of cohomologically independent forms collinear with w
(Theorem 18).
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The paper is organized as follows. In Section 2, we introduce necessary defi-
nitions and facts about Morse form foliations. In Section 3, we prove a criterion
for a Morse form foliation to be compactifiable. Finally, in Section 4 we introduce
a notion of collinearity of 1-forms and use it to give criteria for a foliation to have
a compact leaf or &k homologically independent compact leaves.

2. Definitions and useful facts

Recall that M is a compact oriented connected smooth n-dimensional mani-
fold without boundary.

2.1. Poincaré duality map. We call an injection D : H,_1(M) — Hi(M) a
Poincaré duality map if there exists a basis z; € H,_1(M) such that

Zi DZj = (Sij, (1)

where - is the intersection form. For any basis z; € H,_1(M), there exists a
Poincaré duality map satisfying (1). Obviously, if a subgroup G C H,,_1(M) is a
direct summand in H,,_1(M), i.e. H,_1(M) = G & G’ for some G’, then for any
basis z; € G there exists a Poincaré duality map satisfying (1).

Note that for any subgroup G C H,,_1 (M) we have an isomorphism DG = G;
in particular, rk DG = rk G.

2.2. A Morse form foliation. Recall that for a Morse form w, the set Singw
is finite since the singularities are isolated and M is compact; on M \ Singw the
form defines a foliation F,,. The number of its non-compact compactifiable leaves
is finite, since each singularity can compactify no more than four leaves. The
union of all non-compactifiable leaves is open and has a finite number m(w) of
connected components [1] called minimal components; we call compactifiable a
foliation that has no minimal components.

For a compact leaf v there exists an open neighborhood consisting solely of
compact leaves: indeed, integrating w gives near v a function f with df = w.
Hence, the union of all compact leaves is open. Denote by H, C H,_1(M) a
group generated by all compact leaves of F,,. A Morse form foliation defines the
following decomposition [4]:

H\(M) = DH,, @i, Hi(A), (2)

where A is the union of all non-compact leaves and singularities, i : A < M, and
D:H, 1(M)— Hy(M) is a Poincaré duality map.
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The value ¢(w) = rk H,, is the number of homologically independent com-
pact leaves, i.e. H, has a basis of homology classes of compact leaves, H, =
(Il [Ye(w)]) [4]. For a compactifiable foliation, (2) gives

c(w) > rkw, (3)

where rkw = rkim[w], with [w] : H1(M) — R being the integration map. Obvi-
ously,
rkw + rkker[w] = by (M), (4)

the first Betti number.

2.3. Non-commutative Betti number. Arnoux and Levitt [1] denoted by
by (M) the non-commutative Betti number—the maximal rank (number of free
generators) of a free quotient group of 71 (M); note that b} (M) < b (M) [8].

Ezample 1. For an n-dimensional torus we have b} (T™) = 1; for the connected
sum # of direct products S x S™, n > 1, we have b} ( P (St x S")) = p; for a
genus g two-dimensional surface we have b} (M7) = g [5].

The topology of the foliation is connected with b} (M) [5]:
c(w) +m(w) < by (M), (5)

where ¢(w) is the number of homologically independent compact leaves and m(w)
the number of minimal components.

Denote by h(M) the maximum number of cohomologically independent co-
cycles u; € H'(M,Z) such that the cup-product u; — wu; = 0 [4]. Then
c(w) < h(M) [6, Theorem 3.2] and for some Morse form w on M [5, Theorem 8]
it holds

c(w) = by (M), (6)

which gives
(M) < h(M). (7)

3. Conditions for compactifiability

Denote by H C H,, a subgroup of all z € H,, such that z - ker[w] = 0, where
H, C H,_1(M) is the subgroup generated by all compact leaves of F,, and - is
the cycle intersection.
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Lemma 2. It holds:
(i) H, is a direct summand in H,_1(M);
(ii) H is a direct summand in H,,;
(iii) H is a direct summand in Hy,_1(M).

PROOF. It is easy to show that a subgroup of a finitely-generated free abelian
group is a direct summand iff its quotient is torsion-free.

(i) Let us show that the quotient H,,_1(M)/H,, is torsion-free. It has been
shown in [4] that there exist compact leaves 71, ..., V() € Fu and closed curves
a1, ..., 00 C M such that [y;] form a basis of H,, and [v;] - [o;] = d;;5. Suppose
there exists 0 # z = zo+H,, € H,_1(M)/H, such that kz = 0 for some 0 # k € Z,
ie., z0 ¢ H, but kzg € H,. Then kzo = Y n;[v] and kz - [a;] = n;. Consider
21 = Y, % [vi] € Hy, then kz; = kzo. Since H,, C H,_1(M) is torsion-free, we
obtain zg = 21 € H,,; a contradiction.

(i) Let us show now that the quotient H, /H is torsion-free. Similarly, sup-
pose z ¢ H, i.e., z - ker[w] # 0, then kz - ker[w] # 0 and thus kz ¢ H.

(iil) follows from (i) and (ii). O

Recall that D : H,_1(M) — H1(M) is a Poincaré duality map defined by
the cycle intersection. By Lemma 2, for a basis z; € H there exists a Poincaré
duality map that satisfies (1).

Lemma 3. Let 2; be a basis of H C H,_1(M) and D a corresponding
Poincaré duality map. Then the integrals fDZY w are independent over Q.

Indeed, suppose Y n; [, w = 0, ie., z = Y n; Dz € kerw]; then n; =
z-2z; =0.

Proposition 4. If rk’H > rkw — 1 then F,, is compactifiable.

In fact we will show below that rk’H # rkw — 1, so the above inequality is
equivalent to rk’H = rkw.

ProOOF. Consider a basis z; € H and a corresponding Poincaré duality map
D. Denote Ly = <szi w), a linear space over Q; by Lemma 3, dim Ly = rkH.

Suppose that there exists a minimal component U. Then rkw|y > 2, i.e.,
there exist two cycles s,u € i,H1(U), where i : U — M, with independent
periods [8]. Denote Ly = ([, w, [, w), a linear space over Q; dim Ly = 2.

Let us show that Ly N Ly = 0. Consider z = ngs+ n,u such that fz w € Ly,
Le. [Lw=3n; [, w. Thus z—37,n;Dz; € kerlw]. By definition, H -ker[w] = 0,
so zj - (z — >_,miDz;) = 0. Since z; are generated by compact leaves while
z € i, H1(U); we have z; - z = 0. This gives all n; = 0 and thus [ w =0.
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We have rkw > dim(Ly U Ly) = rk’H + 2; a contradiction. O

The following condition in terms of compact leaves is geometrically more
visual than Proposition 4:

Corollary 5. Let F,, have rkw—1 homologically independent compact leaves
~vi such that [;] - ker[w] = 0. Then F,, is compactifiable, and there exists another
compact leaf v homologically independent from all ;.

PrOOF. By Proposition 4, the foliation is compactifiable. Then (3) gives
c(w) > rkw, so there exists a compact leaf v such that [v] & ([vi]). O

Corollary 5 is not a criterion:

Counterezample 6. On a two-dimensional genus 4 surface M7 represented

as a connected sum of four tori T2, consider a compactifiable foliation such that

Lw=[w=land [[w= [ w= V2, so that tkw = 2 and c¢(w) = 4; see

Figure 1. Then (21 — #2), (23 — 24) € ker[w], but for any homologically non-trivial

compact leaf v € F,, we have either [y]- (21 —22) # 0 or [y]- (23 — 2z4) # 0, so there

are no rkw — 1 = 1 homologically independent leaves such that [y] - kerw = 0.
Note that still rk’H = 2, cf. Proposition 4.

o o
2 ~——"1 =

. F O

V2 O V2
Z3 ﬂ Z w/
@

Figure 1. A foliation on a connected sum Mj = #* | T2

O)

However, with an additional condition the converse to Corollary 5 is true:

Proposition 7. If F, is compactifiable and tkw = ¢(w), then there exist
rkw homologically independent compact leaves ~y; € F,, such that [y;]-ker[w] = 0.
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PRrROOF. Consider a basis [y;] € H,. For a compactifiable foliation, A men-
tioned in (2) is the union of a finite number of compactifiable leaves and singu-
larities, so i, Hq(A) C ker[w] and rkw is determined by D[y;]. Since rk(D[y;]) =
rk H, = ¢(w) = rkw, all corresponding integrals are rationally independent, so
ker[w] = i+ H1(A). Then [v;] - ker[w] = 0 since v; N A = 0. O

In the rest of this section we will study rkH. By (5), tk’H < b} (M). The
following properties of rk H are connected with rkw:

Theorem 8. It holds:
(i) rkH <rkw.
(i) rkH # rkw — 1.
(iii) F, is compactifiable iff rk’ H = rkw.

ProoOF. (i) follows from Lemma 3.

(ii) follows from Proposition 4 and (iii).

(iii) If rk'H = rkw then F,, is compactifiable by Proposition 4.

Let now F,, be compactifiable. By Lemma 2 there exists a Poincaré duality
map D that satisfies (1) for a basis [y;] of H,. Consider ¢ : H, — R, ¢(z) =
Jp,w. Since A in (2) consists of a finite number of compactifiable leaves and
singularities, we have i, H;(A) C ker[w]; in particular, rkw = rkim ¢.

Recall that H = {z € H, | z - ker[w] = 0}. Let u = w1 +uz € H1(M),
uy € DH,, ug € i,H1(A) according to (2). Since H, - i.H1(A) = 0, we have
z-u = z-uy. For a compactifiable foliation, ug € ker[w], so u € ker[w] iff uy €
ker[w]. Thus the above definition can be rewritten as H = {z € H,, | 2-DHy = 0},
where Hy = ker ¢; in other words, H is the set of all z = > n;[7y;] such that for all
zk = > my;[7y;] that generate Hy C H,, it holds z - Dz, =0, i.e., Y n;mg; = 0.

The latter linear system implies rk’H = rk H,, — rk Hy. Since rk H,, = ¢(w)
and rk Hy = rkker ¢ = rk H,, — rkim ¢ = ¢(w) — rkw, we obtain rk’ H = rkw. O

Let us consider some special cases.

Corollary 9. Let ker[w] = 0. Then F,, is compactifiable iff c¢(w) = by (M),
the first Betti number. In this case the cup-product — : H'(M,Z) x H*(M,Z) —
H?(M,Z) is trivial.

PROOF. Since ker[w] = 0, we have rkw = b1 (M) and H = H,. Then the
condition rk’H = rkw from Theorem 8 (iii) is equvalent to c¢(w) = b1(M) and
thus H, = H,,_1(M). Then H'(M,Z) = (z;), where z; are cocycles dual to [y;],
a basis of H,,, and y; Nvy; = () implies z; — z; = 0. O
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So if ker[w] = 0 and — # 0, then F,, has a minimal component. If, however,
— = 0, then both cases are possible. Indeed, on the one hand, in any cohomology
class [w], rkw > 1, there exists a Morse form with minimal foliation [1]. On the
other hand, the foliation can be compactifiable:

Ezample 10. Consider a connected sum M = #7_ (S x S");, n > 1; see
Figure 2. Then b1(M) = b (M) = p (Example 1), which by (7) gives — = 0.
Consider w given on each (S! x S™); by w; = «;dt, where t is a coordinate on
S! and all a; € R are independent over Q so that rkw = p. Obviously, F,, is
compactifiable (its compact leaves are spheres S™).

s|| (O O)) ||«

s s

Figure 2. A foliation on a connected sum (S* x S™) § (S* x S™).

Corollary 11. For a two-dimensional genus g surface M, 3 it holds
tk’H <rkw < 2¢ — c(w) <29 —rkH. (8)

If rk’H = g, then F,, is compactifiable.

PRrOOF. The lower bound is by Theorem 8 (i). Since leaves are one-dimen-
sional, H C H,, C ker[w] and rk ker[w] = 2g—rk w gives the upper bound. If rk’H =
g then (8) implies rkw = g and F,, is compactifiable by Theorem 8 (iii). O

4. Criterion for the presence of compact leaves

Farber et al. proved a necessary condition of existence of a compact leaf
in terms of zero cup-product:

Proposition 12 ([2, Proposition 9.14],[3, Proposition 3|). For so-called tran-
sitive Morse forms, if F,, has a compact leaf with [y] # O then there exists a
smooth closed 1-form o, 0 # [a] € HY(M,Z), such that [a] — [w] = 0.
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The converse is, however, not true; see Counterexample 17 below. Moreover,
no sufficient conditions for existing of a compact leaf can be given in cohomol-
ogous terms: any cohomology class [w], rkw > 1, contains a form with minimal
foliation [1].

We call 1-forms « and 3 collinear if oA = 0. Using the notion of collinearity
instead of zero cup-product, we will generalize Proposition 12 to an arbitrary (not
necessarily transitive) Morse form and refine it to a criterion. For closed 1-forms
the equation a A § = 0 implies [a] — [3] = 0 but not wice versa, so collinearity is
a stronger condition.

Denote Supp o = M \ Sing av. If « is closed, on Supp « the integrable distri-
bution {a = 0} defines a foliation F,.

Lemma 13. For closed collinear 1-forms «, 3, on Supp 3 it holds a = f(z)0,
where f(x) is constant on leaves of Fg. In particular, on Supp a:NSupp 3 it holds
Fo = F3.

PROOF. On Supp (3 there exists a smooth vector field &, such that 5(&,) # 0.

Consider f(x) = ggg:;, which is well-defined: for any vector fields &,, 7, we

have a(&;)8(nz) — a(nz)8(&z) = (@ A B)(&z,mz) = 0. Thus on Supp S we have
a= f(x)p.

Since « and ( are closed, df A 3 = da — fdB = 0. Consider a vector field
¢ tangent to the leaves of Fg and n normal to the leaves. Then df A 5(§,n) =0
implies (df)(§) =0, i.e. f is constant on leaves. O

Proposition 14. Let a be a smooth closed 1-form collinear with a Morse
form w; o # 0 and [o] € HY(M,Z). Then Supp « is the union of a non-empty
subset of compact leaves of F,, and a subset of compactifiable leaves of F,,. These
leaves of F,, are leaves of F,.

PROOF. All leaves of %, are closed. Indeed, since [] € H(M,Z), it defines
a smooth map Fj,) : M — S*,

Fiy(z) = 2 fTo .

Obviously, Fl, is constant on leaves of %, and the critical set of Fj,) coincides
with Sing . So on Supp « the map is regular and by the implicit function theorem
each leaf of F, (which is a connected component of a level F[;}l (y),yeShisa
closed codimension-one submanifold of Supp « (not necessarily closed in M).
Next, if for a leaf v € F,, it holds v N Suppa # @ then v C Supp . Indeed,
suppose there exists xo € yNSing @. By Lemma 13, on Supp w it holds a = f(x)w,
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where the function f(x) is constant on leaves. Since zy € Suppw, we have
f(xzo) =0 and so f|, =0, which gives v N Supp o = @; a contradiction.

Similarly, if for a leaf v € F, it holds v N Singw # @ then v C Singw.
However, since Singw consists of isolated points, such a leaf v would be a point.
This gives Supp a N Singw = @) and thus Supp @ C Suppw.

Now Lemma 13 implies that all leaves of F, are leaves of F,,. Since all leaves
of F, are closed in Supp «, the latter cannot contain any non-compactifiable leaves
of F,. It cannot consist solely of non-compact compactifiable leaves of F,, since
their number is finite while Supp « is open. Thus it must contain compact leaves
of F,,. O

Lemma 15. In the conditions of Proposition 14, if [a] # 0 then F, has a
compact leaf with [y] # 0.

PROOF. Following the reasoning of [4] it is easy to show that (2) holds for
« even though it is not a Morse form. Since its A consists of Sing o and a finite
number of compactifiable leaves, rk v is determined by DH,,. However, if [y] =0
for any compact v € F, then H, = 0 and thus rka =0, i.e., [a] = 0. O

Now we are ready to proof the main result of this section: a criterion for
existence of a compact leaf.

Theorem 16. The following conditions are equivalent:
(i) F. has a compact leaf 7y;
(ii) There exists a smooth function f(x) # const such that df is collinear with w;
(iii) There exists a smooth closed 1-form a # 0, [a] € HY(M,Z), collinear with w.
Moreover, v can be chosen with [y] # 0 iff & can be chosen with [a] # 0.

Note that f and « are not required to be of Morse type.

Proor. (i) = (ii), (ili): Let v be a compact leaf. Consider a cylindrical
neighborhood O(v) = v x I consisting of diffeomorphic leaves. Let (z!,...,2")
be local coordinates in O(v) such that (x!,...,2"~!) are coordinates in v and 2"
in I. Consider a smooth function f(z) = f(2™) # const in O(v) and f(z) =0
on M\ O(y). Let z € O(y); consider the leaf v/ > x. Let n1,my € T, M;
then n; = & + a;n, where & € T,v', a; € R, and n € T, M \ T,y'. We obtain
df (ni) = a;df (n) and w(n;) = a;w(n). Thus df A w(n,n2) = 0, which proves (ii).

Consider now « = f(x)w; obviously, « is closed and collinear with w. In
addition, we can choose f such that [a] € H'(M,Z), which proves (iii). Finally,
if [y] # 0 then there exists a cycle z € Hy (M) such that z - [y] = 1; choosing f
non-negative we obtain [ a # 0, thus [a] # 0.
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(ii), (iii) = (i): This has been shown as Proposition 14 and Lemma 15. [

Now Proposition 12 follows from Theorem 16. What is more, the same
theorem shows that Proposition 12 is not a criterion:

Counterexample 17. The converse to Proposition 12 is not true for manifolds
with b) (M) > 1; see Section 2.3. Indeed, by (6) there exists a Morse form w on
M such that ¢(w) = bj(M). By Theorem 16 there exists a form «, 0 # [a] €
HY(M,Z), such that a A w = 0 and thus [a] — [w] = 0. The same foliation F,
can be defined by a form of rank b} (M) [6, Theorem 4.1], so we can assume that
rkw = bj(M) > 1. Then there exists a form w’ with a minimal foliation and
[w'] = [w] [1]; in particular, [o] — [W'] = 0.

Recall that ¢(w) = rk H,, is the total number of homologically independent
compact leaves of F,,. Theorem 16 states that c(w) # 0 iff there is a suitable
[a] # 0. This can be easily generalized to an arbitrary number k: c(w) > k iff
there are k independent a’s, which gives a criterion for existence of k homologically
independent compact leaves:

Theorem 18. The following conditions are equivalent:

(i) F. has k homologically independent compact leaves ~;;

(ii) There exist k cohomologically independent smooth closed 1-forms a;, [o;] €
HY(M,Z), collinear with w.

If the above conditions hold for k = by (M) then F,, is compactifiable.

PROOF. (i) = (ii): For each 7; construct a form «;, [a;] # 0, as in The-
orem 16. Consider a Poincaré duality map D that satisfies (1) for ~;. Since
ny,; o = 0;5, all [a;] are independent.

(ii) = (i): As has been noted in Lemma 15, rka; is determined by DH,,.
By Proposition 14 we have H,, C H, and thus the rank of the whole system

([oa], ..., [ak]) is determined by H,,, which implies ¢(w) = rk H,, > k.
Finally, by (5), ¢(w) > k = b} (M) implies m(w) = 0, i.e. F, is compacti-
fiable. O
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