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Abstract. The foliation of a Morse form ω on a closed manifold M is considered. Its
maximal components (cylinders formed by compact leaves) form the foliation graph; the
cycle rank of this graph is calculated. The number of minimal and maximal components is
estimated in terms of characteristics of M and ω. Conditions for the presence of minimal
components and homologically non-trivial compact leaves are given in terms of rk ω and
Sing ω. The set of the ranks of all forms defining a given foliation without minimal com-
ponents is described. It is shown that if ω has more centers than conic singularities then
b1(M) = 0 and thus the foliation has no minimal components and homologically non-trivial
compact leaves, its folitation graph being a tree.
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1. Introduction and announcement of the results

Consider a connected closed oriented manifold M with a Morse form ω, i.e., a
closed 1-form with Morse singularities—locally the differential of a Morse function.
The set of its singularities Sing ω is finite. This form defines a foliation Fω on
M \ Sing ω. Its leaves γ can be classified into compact, compactifiable (γ ∪ Sing ω is
compact), and non-compactifiable.

Such foliations have remarkably regular structure. A connected component Cmax
i

of the union of compact leaves—which we call maximal component—is an open cylin-
der over any its leaf, whose levels are leaves. In particular, all leaves in a maximal
component are diffeomorphic. A connected component Cmin

i of the union of non-
compactifiable leaves is called minimal component . Its topology can be arbitrarily
complex—say, such a component can cover the whole M \ Sing ω [1]—but it can-
not be too simple: a minimal component contains at least two cycles with non-
commensurable integrals [10]. Each non-compactifiable leaf is dense in its minimal
component [7]. The boundary of a maximal or minimal component consists of a
finite number of non-compact compactifiable leaves γ0

i and singularities. This gives
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a decomposition of M into a finite number of non-intersecting pieces

M =
(⋃

Cmax
i

)
∪

(⋃
Cmin

i

)
∪

(⋃
γ0

i

)
∪ Sing ω,

interconnected in a way resembling the structure of a simplicial complex.
The way the pieces are put together is described by the foliation graph Γ—a

connected graph (allowing loops and multiple edges) whose edges are Cmax
i and

vertices are connected components of M \ ⋃ Cmax
i . This notion has been used for

studying foliation structure [2, 6]. Note that unlike [10], we define the graph on the
whole M , including Sing ω.

In this paper, we show (Theorem 2.1) that

m(Γ) = c(ω),

where m(Γ) is the cycle rank of the foliation graph Γ and c(ω) is the number of
homologically independent compact leaves of Fω.

The number m(ω) of minimal components is bounded by the first Betti number:
2m(ω) ≤ b1(M) [1, 8]. We obtain a stronger estimate (Theorem 3.1):

2m(ω) + c(ω) ≤ b1(M)

and an independent estimate (our main theorem, Theorem 3.2):

m(ω) + c(ω) ≤ h(M),

where h(M) is the maximum rank of a subgroup in H1(M, Z) with trivial cup-
product [11]. There are practical methods of calculating h(M) (Remark 3.1).

We also estimate (Theorem 3.3) the total number of components for a singular
form:

M(ω) + m(ω) ≤ h(M) + | Sing ω| − 1,

where M(ω) is the number of maximal components (obviously, for a non-singular
form M(ω) + m(ω) = 1 instead). In addition, for a singular form

M(ω) + 2m(ω) ≤ b1(M) + | Sing ω| − 1.

In addition to the bound for m(ω) + c(ω) above, we present some conditions for
m(ω) = 0 and for c(ω) = 0. A foliation having no minimal components is called
compactifiable. In [3] we have presented some conditions for compactifiability of the
foliation in terms of the structure of ker[ω] ⊆ H1(M), where [ω] is the integration
map. Here we consider other characteristics of the form: the form’s rkω

def= rk im[ω]
and the number of singularities of different indices.

If ω is rational (rkω ≤ 1) then Fω is compactifiable [13]. We show that the
converse is true only in the sense that any compactifiable foliation can be defined by
a rational Morse form. Namely, a compactifiable foliation Fω is defined by forms ω′

with
(0 or 1) ≤ rkω′ ≤ c(ω)

(Theorem 4.1); whether 0 is included depends on the structure of the directed foli-
ation graph [4]. In particular, if rkω > h(M) then Fω is not compactifiable. For
instance, if rkω = b1(M) (i.e. maximal) and the cup-product on H1(M, Z) is non-
trivial then Fω is non-compactifiable (Corollary 4.3). If in addition H1(M) has no
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torsion and the cup-product is non-degenerate then all compact leaves of Fω are
homologically trivial (Proposition 4.1).

No necessary condition for compactifiability of Fω can be obtained in terms of
Sing ω: for any foliation there exists a rational Morse form with the same set of
singularities of each index [14]. However, Sing ω can give useful information on M .
If Sing ω = ∅ then M is a bundle over S1 [15], so topology of Fω is defined by rkω:
if rkω = 1 then Fω is compact (all leaves are compact), otherwise it is minimal. If
all singularities are centers then M = Sn and Fω is obviously compact. (By centers,
called also spherical singularities, we mean those of index 0 or dim M .)

We generalize the latter fact: If there are more centers than conic singularities
then (Theorem 4.2)

b1(M) = 0;
in particular, in this case m(ω) + c(ω) = 0, i.e., Fω is compactifiable, all its leaves
are homologically trivial, and its foliation graph is a tree (Theorem 4.3).

The paper is organized as follows. In Section 2 we remind some facts about
qualitative structure of a Morse form foliation and give necessary definitions. We
introduce minimal and maximal foliation components and describe their properties
(Section 2.1). Then we define the foliation graph and calculate its cycle rank (Sec-
tion 2.2). In Section 3 we give the upper bounds on the number of minimal compo-
nents (Section 3.1) and on the total number of (minimal and maximal) components
of the foliation (Section 3.2). Finally, in Section 4 we give some conditions on the
presence of minimal components in terms of the rank of the form (Section 4.1) and
the indices of its singularities (Section 4.2).

2. General structure

The general structure of a Morse form foliation has been studied in [1, 3, 7, 10].

Definition 2.1 ([3]). A leaf γ ∈ Fω is called compactifiable if γ ∪ Sing ω is
compact; otherwise it is called non-compactifiable.

Note that compact leaves are compactifiable.
The set covered by all non-compactifiable leaves is open [7]. A compact leaf γ has

an open neighborhood consisting solely of compact leaves [1, 2]: indeed, integrating
ω gives f with df = ω near γ; hence the set covered by all compact leaves is also open.
The number of non-compact compactifiable leaves γ0

i is finite since each singularity
belongs to the closure of no more than four non-compact compactifiable leaves (see
Figure 1); thus such leaves are isolated.

2.1. Minimal and maximal foliation components. We call foliation components
connected components Ci of the set M \ (

⋃
γ0

i ∪Sing ω), i.e. the union of all compact
and non-compactifiable leaves. Each component Ci is open, ∂Ci ⊆ ⋃

γ0
j ∪ Sing ω.

For any γ0
j there exist either one or two components Ci such that γ0

j ∩ ∂Ci �= ∅; see
Figure 2(a). Thus the number of components is finite.

A component consists entirely of leaves of one type: either non-compactifiable or
compact. Components of the former kind are minimal neighborhoods consisting of
non-compactifiable leaves; each such leaf is dense in its minimal component [1, 7]:
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Figure 1. A conic singularity has locally four (a) or two (b), (c) ad-
jacent (non-compact) leaves; centers have no such leaves, and other
singularities have one (d). Here, (d) and (c) visualize non-compact
leaves for dim M = 4 (the lowest dimension where singularities other
than conic or centers exist) as connected components of the set
{R

4 \ p | x2 + y2 − z2 = ±t2}, respectively, foliated by the “time” t.
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Figure 2. (a) The leaf γ0
2 adjoins only one component, while γ0

1

connects two components. (b) The corresponding foliation graph
has a loop.

Definition 2.2 ([1])). A connected component of the union of all non-compactifiable
leaves is called a minimal component of the foliation.

Components of the latter kind are maximal connected sets consisting of compact
leaves:

Definition 2.3 ([3]). A connected component of the union of all compact leaves
is called a maximal component of the foliation.
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A maximal component C of a singular Morse form foliation is cylindrical: C =
γ × (0, 1), γ × x ∈ Fω, where γ is any (compact) leaf in C. Note that for a non-
singular form a maximal component—which exists iff ω is rational—is a bundle over
S1 with fiber γ ∈ Fω and covers the whole manifold [15].

While a maximal component is topologically simple, the topology of a minimal
component can be arbitrarily complex (e.g., it can cover the whole M \ Sing ω [1]).
Moreover, it cannot be too simple: a minimal component contains at least two
(homologically independent in M) 1-cycles with incommensurable periods [10].

Thus M can be decomposed into a finite number of non-intersecting pieces inter-
connected in a way resembling the structure of a simplicial complex:

(2.1) M =
(⋃

Cmax
i

)
∪

(⋃
Cmin

j

)
∪

(⋃
γ0

k

)
∪ Sing ω,

with maximal components Cmax
i being cylindrical and minimal components Cmin

j

having at least two independent 1-cycles. For examples of such a decomposition see
Figure 2 (a), 3 (a, c), and 4 (b).
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Figure 3. (a), (c) Examples of the decomposition. (b) The vertices
of Γ can include singularities, non-compact compactifiable leaves
and (d) whole minimal components.

2.2. Foliation graph. The configuration formed by the maximal components in the
decomposition (2.1) is described by the foliation graph [3]. Rewrite (2.1) as

M =
(⋃

Cmax
i

)
∪

(⋃
Pj

)
,

where Pj are connected components of the union P of all non-compact leaves and
singularities. Since a maximal component is a cylinder, ∂Cmax

i ⊆ P consists of one
or two connected components; thus each Cmax

i adjoins one or two of Pj . This allows
representing M as a connected graph Γ (admitting multiple edges and loops) with
edges Cmax

i and vertices Pj : an edge Cmax
i is incident to a vertex Pj if ∂Cmax

i ∩Pj �= ∅;
see Figure 2 and 3.
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Let c(ω) = rkHω , where Hω ⊆ Hn−1(M) is generated by all compact leaves, i.e.,
the number of homologically independent compact leaves. Denote by m(Γ) the cycle
rank of the graph Γ.

Theorem 2.1. It holds

(2.2) c(ω) = m(Γ).

Moreover, there exist γ1, . . . , γc(ω) such that for any compact leaf γ it holds [γ] =∑
i∈Iγ

±[γi].

Proof. In Hω there exists a basis e consisting of homology classes of leaves [γ1], . . . , [γc],
c = c(ω) [3]. Each γi, i = 1, . . . , c, defines a maximal component Cmax

i = γi × (0, 1),
which is an edge hi in the foliation graph Γ; see Figure 4(a).
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Figure 4. Proof of Theorem 2.1.

Consider the subgraph Γ0 = Γ \ ∪c
i=1hi; see Figure 4(b). It has the same set of

vertices. Independence of e implies that Γ0 is connected.
Suppose that Γ0 contains a cycle z; associate with it a curve α ⊂ M . Obviously,

α ∩ γi = ∅ for all i. Let h ∈ z be an edge, and γ ⊂ M a corresponding leaf. Then
[α] · [γ] �= 0 and [α] · [γi] = 0, which contradicts maximality of e.

Thus Γ0 is a spanning tree. Since the cycle rank of a graph equals to the num-
ber of chords of its spanning tree [5], we have m(Γ) = c(ω). What is more, since
removing any edge splits a tree, for any compact leaf γ we have [γ] =

∑
i∈Iγ

±[γi];
see Figure 4(c). �

Corollary 2.1. If all compact leaves of Fω are homologically trivial then Γ is a
tree. If in addition Fω has no minimal components then ω = df .

The second statement follows from Corollary 4.1 below.
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3. Number of components

Given a specific M , we can estimate the number of components of Morse form
foliations on M . This may give useful information on their structure.

3.1. Number of minimal components. Denote by m(ω) the number of minimal
components of Fω. It is known that 2m(ω) ≤ b1(M) [1, 8]. We generalize this
estimate:

Theorem 3.1. 2m(ω) + c(ω) ≤ b1(M).

Proof. Let z1, . . . , zc(ω) be 1-cycles dual to homologically independent compact leaves
γ1, . . . , γc(ω), i.e., zi · [γj ] = δij . Each minimal component Cmin

i contains two cycles
z′i, z

′′
i with incommensurable periods [10]. Suppose

(3.1)
m(ω)∑
i=1

(n′
iz

′
i + n′′

i z′′i ) +
c(ω)∑
j=1

mjzj = 0.

Intersecting (2) with [γk] gives mk = 0 for all k. Thus for any p we can rewrite (3.1)
as

(3.2) n′
pz

′
p + n′′

pz′′p = −
∑
i�=p

(n′
iz

′
i + n′′

i z′′i ) = z.

On the one hand, z is induced from Cmin
p and on the other hand, from M \ Cmin

p ,
thus by the Mayer-Vietoris sequence it is induced from ∂Cmin

p . Since ∂Cmin
p consists

of leaves and singularities,
∫

z ω = 0. Thus n′
p = n′′

p = 0, since the corresponding
periods are incommensurable. �

Example 3.1. For a connected sum M = (S2 × S1) � (S2 × S1), Theorem 3.1
gives 2m(ω) + c(ω) ≤ 2. This characterizes the topology of Fω. Indeed, if Fω is
compactifiable, then it has at most two homologically independent compact leaves.
Otherwise, it has exactly one (uniquely ergodic [1]) minimal component, and all its
compact leaves are homologically trivial.

Denote by h(M) the maximum rank of a subgroup in H1(M, Z) with trivial cup-
product [11].

Remark 3.1. Some methods of calculating h(M) can be found in [12]:
(i) h(M1 × M2) = max{h(M1), h(M2)}.
(ii) h(M1 � M2) = h(M1) + h(M2) for dimMi ≥ 2.
(iii) Let bi = bi(M) be the Betti numbers and r = rkker �, where � is the

cup-product on H1(M, Z). Then

b1 + b2r

b2 + 1
≤ h(M) ≤ b1b2 + r

b2 + 1
.

In particular, if b2 = 1 then h(M) = 1
2 (b1 + r); if r = b1 then h(M) = b1.

(iv) If � is surjective then h(M) ≤ r + 1
2 +

√(
b1 − r − 1

2

)2 − 2b2.

Example 3.2. h(T n) = 1 (torus); h(M2
g ) = g.
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Theorem 3.2. m(ω) + c(ω) ≤ h(M).

Proof. (i) Let us show that for a minimal component Cmin there exist u ∈ H1(Cmin)
and z ∈ Hn−1(Cmin) such that their intersection u · z �= 0.

Indeed, consider the diagram

→ H1(∂C) i∗−→ H1(C)
j∗−→ H1(C, ∂C) →

↑ ϕ∗ ↑ D
H1(C) Hn−1(C, Z)
↑ D ↑ ϕ∗

→ Hn−1(C, ∂C, Z) j∗−→ Hn−1(C, Z) i∗−→ Hn−1(∂C, Z) →
where C = Cmin, the lines are exact sequences of pairs, D is the Poincaré isomorphism
defined by the cap-product, and homomorphisms ϕ∗ and ϕ∗ are induced by the
inclusion ϕ : C ↪→ C.

Let c ⊂ C be a closed curve such that
∫

c
ω �= 0 and u = [c]. Then kϕ∗u /∈ imi∗

for any k ∈ Z and j∗ϕ∗u �= 0; let α = D−1j∗ϕ∗u �= 0. Since α ∈ Hn−1(C, Z) is of
infinite order, it can be viewed as an element of Hom(Hn−1(C), R). So there exists a
cycle z ∈ Hn−1(C) such that α(z) �= 0. By construction, u · z �= 0.

(ii) For each minimal component Ci = Cmin
i consider the cycles ui ∈ H1(M),

zi ∈ Hn−1(M) such that ui · zi �= 0.
Consider a maximal system {γj} of homologically independent compact leaves.

The system {zi} ∪ {[γj ]} is independent. Indeed, suppose∑
pizi +

∑
qj [γj ] = 0.

Since uk · [γj ] = 0 and uk · zi = 0 for all i �= k, we have all pi = 0. Then all qj = 0
since [γj ] are linearly independent.

Finally, on {Dzi} ∪ {D[γj ]}, where D : Hn−1(M) → H1(M, Z) is the Poincaré
duality, the cup-product � is trivial, since all Ci and γj do not intersect. �

Example 3.3. For a torus T n, m(ω) + c(ω) ≤ 1. We have all the conclusions of
Example 3.1 (with an obvious correction of its last sentence).

Remark 3.2. The bound on m(ω) implied by Theorem 3.1 and its corollary

(3.3) m(ω) ≤ 1
2
b1(M)

is independent from the bound implied by Theorem 3.2 and its corollary

(3.4) m(ω) ≤ h(M),

as the following examples show. Which one is stronger depends on the structure of
the cup-product.

Example 3.4. For a torus, we have h(T n) = 1 and b1(T n) = n. For n = 2, 3,
bounds (3.3) and (3.4) are equivalent. If n ≥ 4, even the weakened form (3.4) of
Theorem 3.2 gives a stronger bound on m(ω) than Theorem 3.1.
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Example 3.5. For M = �p
i=1(S

2 × S1), p ≥ 2, we have h(M) = b1(M) = p.
Theorem 3.1 gives a stronger bound than Theorem 3.2 and (3.3) stronger than (3.4).
Moreover, for a minimal foliation on this M , (3.3) gives a stronger bound than
Theorem 3.2. We leave open the question of existence of manifolds on which (3.3)
gives a stronger bound than Theorem 3.2 for any foliation.

3.2. Total number of components. Denote by M(ω) the number of maximal
components.

Theorem 3.3. If Sing ω �= ∅ then

(3.5) M(ω) + m(ω) ≤ h(M) + | Sing ω| − 1;

(3.6) M(ω) + 2m(ω) ≤ b1(M) + | Sing ω| − 1.

Proof. In the foliation graph Γ with M(ω) edges and p vertices, M(ω) = m(Γ)+p−1.
Obviously, p ≤ | Sing ω|. By Theorem 2.1 and Theorem 3.2, m(Γ) = c(ω) ≤ h(M) −
m(ω), which gives (3.5); similarly, Theorem 3.1 gives (3.6). �

Example 3.6. For a torus T n and Sn × S1, (3.5) gives M(ω) + m(ω) ≤ | Sing ω|;
for M2

g , M(ω) + m(ω) ≤ g + | Sing ω| − 1.

The estimates (3.5) and (3.6) are independent; cf. Remark 3.2 and the examples
therein.

For a non-singular form, obviously, M(ω) + m(ω) = 1. Note that for such forms,
(3.5) does not hold, for instance, on T n and (3.6) does not hold, for instance, on
Sn × S1.

4. Presence of minimal components
and homologically non-trivial leaves

A foliation without minimal components is called compactifiable. We will present
some conditions for compactifiability of Fω and the presence of homologically non-
trivial leaves in it (i.e., whether the foliation graph is a tree) in terms of rk ω and
Sing ω.

4.1. Conditions in terms of the rank of the form. Consider the form’s rank
rkω = rk im[ω], where [ω] : H1(M) → R is the integration map. If ω is rational
(rkω ≤ 1) then Fω is compactifiable, i.e. m(ω) = 0 [13]. We will show that the
converse is true in the sense that any compactifiable foliation can be defined by a
rational form; more specifically, the ranks of forms defining such a foliation cover a
limited range starting from 0 or 1.

Recall that a maximal component Cmax
j is γj × (0, 1) for some leaf γj and M(ω)

is the number of maximal components.

Theorem 4.1. Let Fω be a compactifiable Morse form foliation and r ≥ 1. Then
there exists a Morse form of rank r defining the same foliation iff r ≤ c(ω).

Whether there exists such a form of rank 0 depends on the structure of the directed
foliation graph [4].
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Proof. It is known that

H1(M) = 〈D[γ1], . . . , D[γM(ω)], i∗H1

(
M \

⋃M(ω)

j=1
Cmax

j

)
〉,

where D is a Poincaré duality map (i.e., D[γk] · [γl] = δkl) and i is the inclusion:
indeed, the cycles z /∈ 〈D[γi]〉 in Figure 5 can be moved out of

⋃ Cmax
i , cf. (2.1); see

a detailed proof in [3].

                         

γ 
i 

z  z 

z 

z 

Figure 5. A cycle z such that z · [γi] = 0 can be moved out of Cmax
i .

So rk ω is defined by 〈D[γk]〉, which by Theorem 2.1 has a basis D[γ1], . . . , D[γc(ω)].
Let us realize each D[γi] by a closed curve αi; by construction αj∩Cmax

i = ∅ iff i �= j.
Without loss of generality we can suppose that αi∩Cmax

i is connected and transverse
to leaves.

Consider on M a smooth function f(x) > 0 constant on leaves in each cylinder
Cmax

i and equal to 1 outside
⋃ Cmax

i . The form ω′ = f(x)ω defines the same fo-
liation Fω. By choosing an appropriate f(x) we can vary its integrals along αi,
i = 1, . . . , c(ω), obtaining any desired rkω′. �

Example 4.1. The compactifiable foliation on M2
g (or �g

i=1 T n) shown in Figure 6
can be defined by a rational form with rkω = 1. It can also be defined by forms with
rkω = 2, . . . , g.

Γ 

                          (a)                                                      (b) 

Figure 6. (a) The foliation from Example 4.1 and (b) its foliation graph.
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Corollary 4.1. For a compactifiable foliation Fω it holds rk ω ≤ c(ω).

Corollary 4.2. Any compactifiable Morse form foliation can be defined by a
rational form.

On the other hand, in any cohomology class with rkω > 1 there exists a form
defining a minimal foliation [1]. What is more:

Corollary 4.3. If rk ω > h(M) then Fω has a minimal component [3]. In partic-
ular, if rkω = b1(M) (maximal) and the cup-product � on H1(M, Z) is non-trivial
then Fω has a minimal component.

Proposition 4.1. If rkω = b1(M), H1(M) has no torsion, and � is non-
degenerate, then c(ω) = 0, i.e., all compact leaves are homologically trivial.

Note that in these conditions, harmonic Morse forms have no compact leaves [2].

Proof. Suppose for some compact leaf γ it holds [γ] �= 0. We can construct a (non-
Morse) form ϕ trivial outside a cylindrical neighborhood of γ, in which Fϕ = Fω;
thus ϕ ∧ ω = 0. Since [γ] �= 0, the form ϕ can be chosen such that [ϕ] ∈ H1(M, Z).
Thus [ϕ] �R [ω] =

∑
αi([ϕ] � ξi) = 0, where �R is the cup-product on H1(M, R)

and ξi is a basis in H1(M, Z). Since H2(M, Z) has no torsion, we have [ϕ] � ξi = 0
for all i, which contradicts non-degenerateness of �. �
4.2. Conditions in terms of the form’s singularities. In Section 3, we have
shown that m(ω) + c(ω) ≤ h(M). We will show that if there are more centers
than conic singularities, then m(ω) + c(ω) = 0, i.e., Fω is compactifiable and all its
compact leaves are homologically trivial.

No necessary condition for compactifiability of Fω can be obtained in terms of
Sing ω: for any ω there exists a rational Morse form with the same singularities with
their indices [14, 15]; its foliation is compactifiable. However, Sing ω can define the
topology of M .

If Sing ω = ∅ then M is a bundle over S1 [15]. the topology of Fω is defined by
rkω: if rkω = 1 then Fω is compact (all its leaves are compact), otherwise it is
minimal.

If Sing ω �= ∅ but all its singularities are centers then M = Sn and Fω is compact.
We will generalize this fact: if there are more centers than conic singularities then
b1(M) = 0.

Denote by Ωk = Ωk(ω), k ≤ n
2 , the set of singularities of index k and n − k. Let

µi = µi(ω) be the number of singularities of index i, then |Ωk| = µk +µn−k for k �= n
2

and |Ωn
2
| = µn

2
.

Theorem 4.2. If |Ω0| > |Ω1| then b1(M) = 0.

Proof. (i) If |Ω0| > |Ω1| then ω = df .
Indeed, there exists a rational Morse form with the same singularities and in-

dices [14]; its foliation is compactifiable. Without loss of generality we can assume
that each its leaf adjoins at most one singularity [6]. Thus its foliation graph Γ has
no vertices P with deg P > 3; the singularity in any vertex with deg P = 3 belongs
to Ω1, and the set of vertices with deg P = 1 is Ω0.
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For a connected graph, 2m(Γ) =
∑

(k − 2)pk + 2 ≥ 0, where m(Γ) is the cycle
rank and pk is the number of vertices with deg P = k; p1 = |Ω0|, p3 ≤ |Ω1|. Thus
|Ω0| > |Ω1| implies m(Γ) = 0; by Theorems 2.1 and 4.1, ω = df .

(ii) If dimM ≥ 3 and ω = df then

(4.1) |Ω0| − |Ω1| ≤ 2 − 2b1(M).

Indeed, consider the Morse inequality

F (λ) =
λ∑

k=0

(−1)λ−k(µk(f) − bk(M)) ≥ 0,

which turns into equality for λ = n, where n = dimM . Applying it to F (1)+F (n−
2) − F (n) gives

−(µ0 − b0) + (µ1 − b1) + (µn−1 − bn−1) − (µn − bn) ≥ 0,

which gives (4.1) since |Ω0| = µ0(f) + µn(f) and |Ω1| = µ1(f) + µn−1(f).

(iii) On M2
g it holds |Ω0| − |Ω1| = 2− b1(M), which together with (ii) finishes the

proof. �
Now, Theorem 3.1 gives:

Theorem 4.3. If |Ω0| − |Ω1| > 0 then Fω is compactifiable (m(ω) = 0), all its
compact leaves are homologically trivial (c(ω) = 0), and the foliation graph is a tree.
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