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Abstract

On a smooth closed n-manifold, we consider Morse forms with wedge-product zero;
we call such forms collinear. This is an equivalence relation. Collinearity classes are
classified by the underlying foliation; so, in other words, we study the set of Morse
forms that define the same foliation. We describe the set of the ranks of such forms
and show how it is related to the structure of the foliation and the manifold.
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1 Introduction and statement of main results

Let M be a connected smooth closed oriented n-dimensional manifold. A
Morse form on M is a closed 1-form with Morse type singularities—locally
the differential of a Morse function. We study Morse forms ω, ω′ on M with
wedge-product zero, ω ∧ ω′ = 0; we call such forms collinear.

Morse forms are “typical” among closed 1-forms: the set of Morse forms is
open and dense in the space of all closed 1-forms [1]. By the Morse lemma,
near its critical points a Morse function has quadratic structure. Since Morse
forms are typical, this explains the ubiquity of quadratic forms and functions
in physics and life.

On the other hand, collinear 1-forms appear in many problems of theoretical
physics, for example, in general relativity and quantum cosmology. Collinear 1-
forms which are the Weyl tensor invariants arise in the problem of classification
of type I vacuum solutions with aligned Papapetrou fields [2]. The triplet
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ansatz, which figures in various problems of metric–affine theory of gravity [3,
4], defines three collinear 1-forms.

Collinearity is a reflexive and symmetric relation; we show that for Morse
forms—in fact, for forms with small enough set of singularities—it is also
transitive (Corollary 3.3). We denote the equivalence class of ω by [ω].

The corresponding foliation Fω is a characteristic of the class (Lemma 3.2).
In geometric terms, much of our paper can be thought of as the inverse prob-
lem: the study of the forms defining a given foliation F as a geometric object
regardless of the form—in physics it is often observable experimentally. In-
variants of [ω] are invariants of F . Particularly important for the theory of
foliations is that to study the properties of a given F one can choose any
ω′ ∈ [ω] that best fits the needs of the problem at hand.

In algebraic terms, two Morse forms are collinear iff ω′ = f(x)ω, where f(x)
is a non-vanishing smooth function such that df ∧ ω = 0, i.e., constant on
leaves of Fω (Lemma 3.6); we call such functions admissible for ω. Obviously,
admissibility of a function is an invariant of a class and the set of admissi-
ble functions is its characteristic. The set of functions admissible for a given
class [ω] has rich algebraic structure (Proposition 3.9). In summary, a class of
collinear Morse forms can be described as

[ω] ≡ {ω′ | ω′ ∧ ω = 0}
= {ω′ | Fω′ = Fω}
= {ω′ | ω′ = f(x)ω; f is admissible}.

The foliation F of [ω] defines the so-called foliation graph Γ (Section 2.3),

which is, obviously, an invariant of the class. The foliation digraphs
−→
Γ (ori-

ented along the form gradient) of different forms in [ω] coincide up to global
inversion of the orientation (Corollary 3.7). Thus, a foliation as a geometric

object, regardless of the 1-form, defines the orientation ±−→
Γ on its foliation

graph Γ, in particular, the presence of (directed) circuits in it.

For a collinearity class [ω] of Morse forms, we study the set of ranks

R = {rk ω′ | ω′ ∈ [ω]},

where the rank of a form is the rank of its group of periods:

rk ω = rkQ {∫

z ω | z ∈ H1(M)} .

Note again that R is an invariant of the foliation F as a geometric object. We
calculate its maximum and estimate its minimum and the range max(R) −
min(R) in terms of the homological structure of the set of compact leaves,
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the local groups of periods Pj roughly corresponding to minimal components

(Proposition 4.2), and the presence of circuits of the foliation digraph
−→
Γω

(Proposition 4.8). Our main theorem (Theorem 4.11) summarizes these results.
The set R is not necessarily a segment [min(R), max(R)]: it may have gaps;
this depends on the algebraic structure of Pj (Proposition 4.5).

Properties of F are closely connected with R. We show (Corollary 5.1) that
min(R) ≤ 1 iff F is compactifiable (has no minimal components) and if 1 ∈
R, then F has homologically non-trivial compact leaves; on the other hand,
if max(R) > b′1(M), then F has minimal components, where b′1(M) is the
maximum rank of a (non-Abelian) free quotient group of the fundamental
group π1(M). Then we classify the cases when |R| = 1 in terms of the foliation
structure (Corollary 5.2).

The value b′1(M), introduced by Arnoux and Levitt [5], plays important role
in the study of foliations. Unfortunately, we are not aware of any practical
ways of calculating b′1(M) for a specific manifold. We show, however, that
b′1(M) ≤ h(M), where h(M) is the maximal rank of a subgroup of H1(M) with
zero cup-product (Proposition 4.10); unlike b′1(M), it can be nicely calculated
for many specific manifolds [6, 7]. This gives a weaker but more practical upper
bound whenever b′1(M) is involved.

Especially interesting is the case when the first Betti number b1(M) ∈ R, i.e.,
max(R) = b1(M), which is the maximum value of rkω possible for a given
manifold M . This gives information not only on F but also on the topology of
M , namely, the structure of its cup-product ^: in this case rk ker^ ≥ c(ω),
the number of homologically independent compact leaves of F (Theorem 5.3);
if in addition F is compactifiable then c(ω) = b1(M) and ^ ≡ 0 (Corol-
lary 5.4); if b1(M) 6= 0 and ^ is non-degenerate then c(ω) = 0 and F has
minimal components (Corollary 5.5).

Note that the condition b1(M) ∈ R for the foliation Fω of a given form ω can be
met even if rk ω is small (Example 5.7): e.g., it is enough that

∑

rk Pj = b1(M)
for the above-mentioned Pj (Corollary 5.6). This illustrates how by studying
the foliation of a given form ω one can predict the existence of another form
ω′ ∈ [ω] that gives better information on Fω and even on M : here, a form ω′

with rk ω′ = b1(M).

The paper is organized as follows. In Section 2, we give some necessary de-
finitions and facts concerning Morse form foliations. In Section 3, we study
collinear Morse forms and in Section 4, the set R of their ranks. Finally, in
Section 5 we connect our findings with the manifold and foliation structure.
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2 Morse form foliation

Let us introduce for future reference some useful notions and facts about Morse
forms and their foliations.

Let M be a connected smooth closed oriented n-dimensional manifold. A
closed 1-form ω on M is called a Morse form if it is locally the differential of
a Morse function. Denote by Sing ω = M \ Supp ω the set of its singularities.
This set is finite since the singularities are isolated and M is compact.

In the sequel we shall only consider Morse forms unless otherwise stated.

2.1 Leaves

On Supp ω the form ω defines a foliation Fω. A leaf γ ∈ Fω is called compacti-
fiable if γ ∪ Sing ω is compact (note that compact leaves are compactifiable);
otherwise it is called non-compactifiable. If a foliation contains only compac-
tifiable leaves, then it is called compactifiable.

Consider the group Hω ⊆ Hn−1(M) generated by the homology classes of all
compact leaves. Since M is closed and oriented, Hω is finitely generated and
free; it has a basis consisting of homology classes of leaves:

Hω = 〈[γ1], . . . , [γc(ω)]〉, (1)

γi ∈ Fω [6]. The value c(ω) = rkHω is the number of homologically indepen-
dent compact leaves.

While Fω is defined only on Supp ω, we can extend it to the whole M as a
singular foliation Fω:

Definition 2.1 ([8]) A singular foliation Fω is a decomposition of M into
leaves: two points p, q ∈ M belong to the same leaf if there exists a path
α : [0, 1] → M , α(0) = p, α(1) = q, with ω(α̇(t)) = 0 for all t.

A singular leaf of Fω contains a singularity. A 1-form is called generic if each
its singular leaf contains precisely one singularity [8, Definition 9.1]. The set
of generic Morse forms is dense in the space of all 1-forms [8, Lemma 9.2] [9],
though it is not necessarily open.

Leaves compactified by one singularity are only found next to compact leaves:

Lemma 2.2 Let γ0 ∈ Fω be a non-compact compactifiable leaf such that γ0∪s
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is compact for some s ∈ Sing ω. Then in any neighborhood of γ0 = γ0∪s there
exists a compact leaf γ ∈ Fω.

PROOF. For a two-dimensional surface M2
g the fact has been proved in [10]

(using similar considerations), so assume dim M ≥ 3.

+ 
– 

– U2 U1 

 γ – 
s 
+ 

 0 

 ∂1 

 ∂2 

Fig. 1. A neighborhood U of γ0, a
non-compact leaf compactified by a
singularity s, ind s = 1. The function
f , ω = df , has constant sign in U1.

Consider a small cylindrical neighbor-
hood U of γ0 such that U ∩ Sing ω =
{s}. In this neighborhood ω = df ; as-
sume f(γ0) = 0. The set U \ γ0 has
two connected components U1, U2; see
Fig. 1.

By the Morse lemma, in a neighbor-
hood of s there are local coordinates
x1, . . . , xn, n = dim M , such that
xi(s) = 0 and f(x) = −x2

1 − · · ·− x2
k +

x2
k+1 + · · · + x2

n, k = ind s. In a neigh-
borhood of a singularity of index k and n − k the foliation has the same
topological structure.

If ind s = 1 or n − 1, then the singular level {f = 0} is locally a cone and
thus {f = 0} \ s is not connected—the case shown in Fig. 1; non-singular
levels near s are one-sheeted and two-sheeted hyperboloids. For any other ind s
the set {f = 0} \ s is connected; nearby non-singular levels are one-sheeted
hyperboloids.

Therefore locally there are at most two (non-compact) leaves adjoining s, at
least one of which is a part of γ0. Thus at least one of the two components
of U , say U1, does not intersect (locally) with the singular leaf containing γ0.
In particular, f does not change its sign in U1; assume f |U1

> 0. We can even
assume f |∂1

> 0, where ∂1 is the connected component of ∂U corresponding
to U1. Since ∂1 is compact, ε = min∂1

f(x) > 0. Therefore f−1( ε
2
) ⊂ U1. This

non-empty compact set is a leaf of Fω. 2

2.2 Decomposition of the manifold

A foliation Fω defines a complex-like decomposition of M into a finite number
of mutually disjoint sets [6]:

M =
(

⋃

Cmax
i

)

∪
(

⋃

Cmin
j

)

∪
(

⋃

γ0
k

)

∪ Sing ω
︸                                   ︷︷                                   ︸

∆

. (2)

5



A maximal component Cmax
i of the foliation is a connected component of the

union of all compact leaves. If Sing ω 6= ∅, each maximal component is a
cylinder over a compact leaf:

Cmax
i

∼= γi × (0, 1), (3)

where the diffeomorphism maps γi to leaves of Fω. The number of maximal
components is finite.

A minimal component Cmin
j is a connected component of the union of all non-

compactifiable leaves. The number m(ω) of minimal components is finite. Each
non-compactifiable leaf is dense in its minimal component [11].

Non-compact compactifiable leaves γ0
k and singularities are the boundaries of

components Cmax
i and Cmin

j , which are open. The number of non-compact
compactifiable leaves and singularities is also finite.

In homology terms, (2) takes the following form:

Lemma 2.3 Let {γi} ⊂ Fω be compact leaves such that [γi] form a basis
of Hω. Then

H1(M) = DHω ⊕ i∗H1(∆), (4)

where i : ∆ ↪→ M is the inclusion and D : Hn−1(M) → H1(M) is a Poincaré
duality map such that the intersection product D[γi] · [γj] = δij.

This refines the result from [6] 1 ,

H1(M) = 〈DHω, i∗H1(∆)〉,

in noting that if z ∈ DHω ∩ i∗H1(∆), then z =
∑

niD[γi] and z · [γi] = 0 for
all i since γi ∩ ∆ = ∅; thus all ni = 0.

2.3 Foliation graph

The configuration formed by maximal components in the decomposition (2)
is described by the foliation graph Γω. Rewrite (2) as

M =
(

⋃

Cmax
i

)

∪
(

⋃

∆j

)

, (5)

where ∆j are connected components of the union ∆ of all non-compact leaves
and singularities.

1 We use the notation 〈A,B〉 for the module generated by A and B.
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By (3), ∂Cmax
i ⊆ ∆ consists of one or two connected components; thus each

Cmax
i adjoins one or two of ∆j . This allows representing M as a connected

graph (allowing loops and multiple edges) Γω with vertices ∆j and edges Cmax
i :

an edge Cmax
i is incident to a vertex ∆j if ∂Cmax

i ∩ ∆j 6= ∅; see Fig. 2. The
graph can be directed by the increase of the local gradient defined by ω; we

denote this digraph by
−→
Γω.

 ∆∆∆∆ 
 
1 

∆∆∆∆ 
 
4 

C 3 C 2 

∆∆∆∆ 
 
2 

∆∆∆∆ 
 
3  

 
 

C 1 

C 4 

(a)

 ∆∆∆∆ 
 
1 

∆∆∆∆ 
 
4 

C 4 

C 1 

C 3 C 2 

∆∆∆∆ 
 
2 

∆∆∆∆ 
 
3 

(b)

Fig. 2. (a) A foliation on a torus T 2 with four maximal components Ci and four sets
∆j from (5)—of them, two singular leaves and two isolated singularities; (b) the
corresponding foliation graph.

If Sing ω = ∅, then M is a fiber bundle over S1 [12], with either M = Cmin or
M = Cmax. In the latter case, we assume the “graph” Γω, suitably generalized,
to have one loop edge and no vertices.

A semi-circuit in a digraph is a cycle in the corresponding undirected graph;
we choose an arbitrary orientation in it. If all edges of a semi-circuit go the
same direction, it is called a circuit. A digraph is acyclic if it has no cir-
cuits; note that it can have semi-circuits, i.e., the corresponding undirected
graph can have cycles. The following technical lemma is used in the proof of
Proposition 4.8:

Lemma 2.4 Let
−→
Γ be a directed acyclic graph (allowing loops and multiple

edges). Then there exists a function f(xi) > 0 on its edges such that for any
semi-circuit s it holds

∑

s ±f(xi) = 0, where the sign is positive iff xi is directed
along the orientation in s.

Indeed, for an edge x = −→uv we can choose f(x) = t(v)− t(u), where t(∗) is the

number of the vertex in a topological ordering of
−→
Γ .
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3 Collinear Morse forms

Definition 3.1 1-forms ω, ω′ such that ω ∧ ω′ = 0 are called collinear.

On the set of Morse forms (unlike arbitrary 1-forms) collinearity is an equiv-
alence relation, and the foliation is its class characteristic. Indeed:

Lemma 3.2 Let ω, ω′ be Morse forms. Then ω ∧ ω′ = 0 iff Fω = Fω′.

PROOF. Let Fω′ = Fω. Since on Sing ω′ = Sing ω it holds that ω ∧ ω′ = 0,
consider x 6∈ Sing ω, i.e., x ∈ γ ∈ Fω. Choose an n ∈ TxM \ Txγ. Since
projecting TxM on 〈n〉 along Txγ preserves both ω and ω′, at x we also have
ω ∧ ω′ = 0.

Let now ω ∧ ω′ = 0. Consider a path α : [0, 1] → M in a leaf γ ∈ Fω, so
ω(α̇) = 0. Consider x ∈ α \ Sing ω, ξ ∈ Txα, and n ∈ TxM \ Txγ; the equation
ω ∧ ω′(ξ, n) = 0 implies ω′(ξ) = 0. Thus ω′(α̇) = 0 on α \ Sing ω and, by
continuity, on the whole α, since Sing ω is a finite. Similarly, ω′(α̇) = 0 implies
ω(α̇) = 0. Therefore, the two forms define the same equivalence relation from
Definition 2.1, i.e. Fω = Fω′ and thus Fω = Fω′. 2

Corollary 3.3 For collinear Morse forms ω, ω′ it holds that Sing ω′ = Sing ω.

Corollary 3.4 For Morse forms, collinearity is an equivalence relation.

Denote by [ω] the equivalence class of a Morse form ω or, in other words, the
class of Morse forms that define a given Morse form foliation Fω:

[ω] ≡ {ω′ ∈ Morse forms | ω′ ∧ ω = 0}
= {ω′ ∈ Morse forms | Fω′ = Fω}.

We shall study the structure of the forms that constitute [ω].

Proposition 3.5 Let ω, ω′ be Morse forms. Then ω′ ∈ [ω] iff ω′ = f(x)ω for
some smooth non-vanishing function f(x) on M such that df ∧ ω = 0.

PROOF. Let ω′ = f(x)ω. Then it has Morse singularities and dω′ = 0; thus
ω ∧ ω′ = ω ∧ fω = 0, i.e., ω′ ∈ [ω].

Let now ω′ ∈ [ω]. By Corollary 3.3 we have Sing ω′ = Sing ω. On M \ Sing ω
consider a smooth vector field ξ such that ω(ξx) 6= 0 for all x. The ratio

f(x) =
ω′(ξx)

ω(ξx)
(6)
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is a smooth non-vanishing function, which is well-defined since for any other
such field η the collinearity condition gives

(ω ∧ ω′)(ξx, ηx) = ω(ξx)ω
′(ηx) − ω(ηx)ω

′(ξx) = 0;

thus ω′ = f(x)ω. Since dω′ = 0, we obtain df ∧ω = 0. It remains to show that
f(x) can be smoothly continued to Sing ω preserving these properties.

By the Morse lemma, in a neighborhood of s ∈ Sing ω there exist coordinates
xi such that xi(s) = 0 and ω(ξ) =

∑±xiξi. Rewrite (6) as

f(x) =

∑

aij(x)xjξi

∑±xiξi
, (7)

where aij(x) =
∫ 1
0

∂ω′

i
(tx)

∂xj dt. Collinearity of ω and ω′ implies that aij(x) = 0 for
i 6= j. Then for x 6= 0, (7) can be rewritten as

∑

aii(x)xiξi =
∑

±f(x)xiξi,

which gives f(x) = ±a11(x). It can be smoothly continued to x = 0. Since

aij(0) =
∂ω′

i(0)

∂xj and ω′ is a Morse form, the matrix (aij(0)) is non-degenerate;
thus f(0) = ±a11(0) 6= 0. 2

Lemma 3.6 df ∧ ω = 0 iff f is constant on leaves of Fω.

This can be proved by direct calculation.

Corollary 3.7 If ω′ ∈ [ω], then
−→
Γω′ = ±−→

Γω, i.e. the directed foliation graphs
of collinear Morse forms either coincide or have opposite orientations.

We have shown that [ω] = {f(x)ω | f(x) 6= 0 and df ∧ ω = 0}, so the study
of [ω] reduces to the study of this class of functions.

Definition 3.8 A smooth function f(x) 6= 0 such that df ∧ ω = 0 is called
admissible for the Morse form ω.

By Proposition 3.5, a function admissible for ω is admissible for all forms
in [ω]. What is more, the set of admissible functions is a characteristic of the
class [ω].

The algebraic structure of the set of functions admissible for ω is very rich:

Proposition 3.9 Let ϕ(y1, . . . , ym) 6= 0 be a smooth function on (R \ {0})m

and f1(x), . . . , fm(x) be admissible functions. Then ϕ(f1(x), . . . , fm(x)) is also
admissible. In particular, if f(x), g(x) are admissible, then so are −f(x), 1

f(x)
,
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f(x)g(x), and f(x)g(x); if sgn f(x) = sgn g(x) or otherwise f(x) 6= −g(x) for
all x, then f(x) + g(x) is admissible.

Proposition 3.10 An admissible function f(x) on M can be viewed as a
function on the foliation graph Γω as a 1-complex.

PROOF. Consider the decomposition (5). By definition, an admissible func-
tion f(x) is constant on leaves of Fω. Since a leaf is dense in a minimal com-
ponent, f(x) is constant in each vertex ∆i, and in maximal components Cmax

i

it can be thought of as defined on an edge of Γω as an interval. 2

4 Ranks of collinear Morse forms

Recall that rkω is the rank of its group of periods over Q. In this section, we
study the set of ranks of collinear forms

R = {rk ω′ | ω′ ∈ [ω]}.

For non-singular forms, |R| = 1; namely, R = {r}, with r = 1 for compact
foliations and r ≥ 2 for minimal foliations; cf. Corollary 5.2.

As shown in Lemma 2.3,

H1(M) = i∗H1(∆) ⊕ DHω. (8)

We shall construct the set R of two sets, R∆ and RH , that correspond to the
first and the second summand.

4.1 The set R∆

Recall that ∆j are connected components of ∆ from (2) (cf. (5)):

∆ =
(

⋃

Cmin
l

)

∪
(

⋃

γ0
i

)

∪ Sing ω.

If ∆j ⊆ (
⋃

γ0
i ) ∪ Sing ω, then ω|∆j

= 0 and by Lemma 3.2 for ω′ ∈ [ω] also
ω′|∆j

= 0. So the periods of ω′ in ∆ are defined only by those ∆j that contain
minimal components. In the sequel we shall consider only such ∆j ; denote by
k their number:

k = |{∆j ⊆ ∆ | ∆j ∩
⋃

Cmin
i 6= 0}|. (9)
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Fig. 3. Two tori T 2 with a hole, each one
with its own irrational winding and a com-
pactifiable leaf along the border of the hole.
They are glued together by the holes into a
double torus M2

2 (as in Fig. 4, but the tube
has zero length) with m(ω) = 2, but k = 1.
The singular leaf contains two singularities.

Obviously, k ≤ m(ω), where
m(ω) is the number of minimal
components. Fig. 3 shows an ex-
ample of strict inequality: a dou-
ble torus as a connected sum
M2

2 = T 2 ] T 2 with a sepa-
rate irrational winding on each
T 2 and without any maximal
components. While it has two
minimal components, its folia-
tion graph consists of the only
vertex ∆1 = ∆ and no edges.
Note that this Morse form is not
generic.

Lemma 4.1 If ω is a generic Morse form, then k = m(ω).

PROOF. Recall that each singular leaf of a generic form contains only one
singularity.

Consider a connected component ∂ ⊂ ∂Cmin. It is a part of a non-compact
singular leaf γ, γ ⊂ Cmin ⊂ ∆j; more specifically, ∂ is a compactifiable leaf
compactified by one singularity. By Lemma 2.2, there exists a compact leaf
close to ∂. Thus what is attached to Cmin by ∂ is a maximal component.
Therefore each ∆j contains at most one minimal component. 2

Denote by Pj(ω
′) = 〈∫zω

′ | z ∈ i∗H1(∆j)〉 the group of periods of ω′ on the
set ∆j . Consider the set

R∆ ≡ {rkQ〈P1(ω
′), . . . , Pk(ω

′)〉 | ω′ ∈ [ω]}.

By Proposition 3.5, for ω′ ∈ [ω] it holds that ω′ = f(x)ω for some admissible
function f(x). Since by Proposition 3.10 it holds that f |∆j

= cj ∈ R \ 0, we
obtain Pj(ω

′) = cjPj(ω). Then

R∆ = {rkQ〈c1P1, . . . , ckPk〉 | cj ∈ R \ 0}, (10)

where Pj = Pj(ω).

The study of the structure of the set (10) is a number theory problem. Here
we shall only touch upon some its properties.
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The set R∆ is bounded: R∆ ⊆ [r∆, R∆], where r∆ = min(R∆) and R∆ =
max(R∆). 2 Define rj = rkQ Pj.

Proposition 4.2 For non-compactifiable foliations the following hold:

(i) Lower bound: r∆ ≥ maxj rj ≥ 2,
(ii) Upper bound: R∆ =

∑

j rj ≥ 2k,
(iii) Range: k − 1 ≤ R∆ − r∆ ≤ b1(M) − 2 − c(ω),

where k is defined by (9); for generic Morse forms, k = m(ω).

Obviously, for a compactifiable foliation, R∆ = {0}.

PROOF. That k = m(ω) has been shown as Lemma 4.1.

(i) Since rkQ(cjPj) = rj , by (10) we have r∆ ≥ maxj rj . A minimal compo-
nent contains at least two (homologically independent in M) 1-cycles with
incommensurable periods [13], i.e., rj ≥ 2.

(ii) For each ∆j, let periods {α(j)
1 , . . . , α(j)

rj
} be independent over Q; then so

are

{c1α
(1)
1 , . . . , c1α

(1)
r1

, c2α
(2)
1 , . . . , c2α

(2)
r2

, . . . , ckα
(k)
1 , . . . , ckα

(k)
rk
}

for suitable cl ∈ R. Thus R∆ =
∑k

j=1 rj.

(iii) Choosing cj = 1/α
(j)
1 , we have r∆ ≤ ∑k

j=1 rk(cjPj) − k + 1, which by (ii)
gives R∆ − r∆ ≥ k − 1. For the upper bound in (iii), see Theorem 4.11. 2

Fig. 4. Two tori T 2 with a hole, each one
with its own irrational winding and com-
pact leaves around the hole. They are glued
together by the holes into a double torus M2

2

with two minimal components and a maxi-
mal component on the tube.

The following example shows
that strict inequality can hold
in (i):

Example 4.3 It is possible that
r∆ > maxj rj. Indeed, represent
the double torus M2

2 as a con-
nected sum of two tori T 2 con-
nected by a tube; see Fig. 4. Let
the foliation be defined by the
form dx +

√
2 dy on the first

torus, dx +
√

3 dy on the sec-
ond, and be compact on the tube.

2 By min(A) we denote min
x∈A

x, and similarly for max(A).
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Then ∆ has two connected com-
ponents, with their groups of periods P1 = 〈1,

√
2〉 and P2 = 〈1,

√
3〉. We have

rk〈P1, P2〉 = 3, rk〈P1,
√

5P2〉 = 4; R∆ = {3, 4} and r∆ = 3, while rk Pj = 2.

In a general position case (i.e., if all periods are incommensurable) the range
is the smallest possible: R∆ − r∆ = k − 1, and all intermediate values are
reached: R∆ = [r∆, R∆] ⊂ Z. In some special cases, however, the set R∆ can
have gaps:

Example 4.4 Let M2
2 be as in the previous example, but the forms on both

tori be dx+
√

2dy. Then P1 = P2 = 〈1,
√

2〉; rk〈P1, P2〉 = 2, rk〈P1,
√

5P2〉 = 4;
R∆ = {2, 4}; cf. Proposition 4.5.

Existence of gaps is connected with the algebraic structure of the groups of
periods. In the previous example the space generated by the periods 〈1,

√
2〉Q

was a field; this can be generalized:

Proposition 4.5 Let ∆ = ∆1 ∪ ∆2 and P1 = P2 = P , where P is a field.
Then R∆ = {rk P, 2 rkP} has a gap.

PROOF. Consider c ∈ R. If P ∩ cP = 0 then rk〈P, cP 〉 = 2 rkP . Otherwise
there exists x ∈ P such that x = cy 6= 0 for some y ∈ P ; therefore c =
xy−1 ∈ P , cP = P , and rk〈P, cP 〉 = rk P . We have R∆ = {rk P, 2 rkP}.
Since rk P ≥ 2 (cf. Proposition 4.2 (i)), R∆ has a gap. 2

The condition for P to be a field is important. Indeed, change the form in
Example 4.4 to dx + 3

√
2 dy. Then P = 〈1, 3

√
2〉Q is not a field. Taking c ∈

{1, 1/ 3
√

2,
√

3}, we get R∆ = {2, 3, 4}, which has no gaps.

4.2 The set RH

Consider now the part DHω of (8) and calculate

RH ≡ {rkQ 〈∫zω
′ | z ∈ DHω〉 | ω′ ∈ [ω]}.

Proposition 4.8 below shows that this set is well-defined and does not depend
on the choice of the duality map D.

While in minimal components the form almost cannot be changed without
changing the foliation, maximal components allow one to vary the correspond-
ing periods arbitrarily:
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Lemma 4.6 Let ω be a Morse form, C = Cmax ⊆ M a maximal component
of Fω, and α : [0, 1] → C, α(0), α(1) ∈ ∂C, a curve transverse to leaves.
Then for any A ∈ R there exists a (not necessarily Morse) form ω′ such that
Fω′ |C = Fω|C, ω′|M\C = ω, and

∫

α ω′ = A. If sgn
∫

α ω = sgn A, then ω′ can be
chosen a Morse form.

The condition Fω′ = F means that ω′ is collinear with ω and int (Sing ω′) = ∅.
If ω′ is also a Morse form, then Fω′ = Fω. Otherwise, however, Sing ω′ as
constructed below can include two whole leaves of ω.

PROOF. Choose J = [t1, t2] ⊂ (0, 1). Consider a smooth function g(t) such
that g|R\J ≡ 1, g(t) = 0 at two points, if any, and g|J grows large enough,
or drops low enough (negative if needed), to make

∫ 1
0 g(t) ω(dα(t)) = A. It

induces on M a function f(x) constant on leaves, such that f |M\C ≡ 1 and
f(α(t)) = g(t) in C. Then ω′ = f(x)ω has the desired properties.

Let now sgn
∫

α ω = sgn A; assume A > 0. Choose t1, t2 above such that
(
∫ t1
0 +

∫ 1
t2

) ω(dα(t)) < A. Then g(t) can be chosen positive. By Proposition 3.10,
f(x) is admissible; thus ω′ is a Morse form. 2

Corollary 4.7 Let Ci = Cmax
i be maximal components of Fω, αi : [0, 1] → Ci,

αi(0), αi(1) ∈ ∂Ci, be curves transverse to leaves, and Ai ⊂ R \ 0, sgn Ai =
sgn

∫

αi
ω. Then there exists a Morse form ω′ ∈ [ω] such that

∫

αi
ω′ = Ai and

ω′ ≡ ω on M \ (
⋃ Ci).

That is, by choosing a suitable form in [ω], the absolute values of the integrals

along the edges of the foliation graph
−→
Γω can be varied in any desired way.

Proposition 4.8 It holds that 3

RH = [a, c(ω)], (11)

where

a =







0 if
−→
Γω is acyclic,

1 otherwise
(12)

and c(ω) is the number of homologically independent compact leaves.

Note that we only require
−→
Γω to have no (directed) circuits, while it may have

semi-circuits, i.e., the undirected graph Γω does not have to be acyclic.

3 When appropriate, we use the notation [a, b] = {x ∈ Z | a ≤ x ≤ b}.

14



PROOF. The upper bound follows from (4) since c(ω) = rkHω. The lower

bound follows from the fact that if the foliation graph
−→
Γω has a circuit con-

taining a closed curve α, then 〈∫α ω′〉 6= 0 and thus RH 63 0. It remains to
show that the bounds are exact and all intermediate values are reached.

Recall from Lemma 2.3 that Hω = 〈[γ1], . . . , [γc]〉, c = c(ω), and D[γi] form a
basis of DHω with D[γi] · [γj] = δij . Realize the cycles D[γi] by closed curves
αi. Recall that Cmax

j
∼= γj × (0, 1); without loss of generality we can assume

that αi ∩Cmax
j 6= ∅ iff i = j, all αi are transverse to leaves, and each αi ∩Cmax

i

is connected [6, 14].

By Corollary 4.7, we can slightly vary the integrals of ω′ along αi, i = 1, . . . , c,
and therefore vary r(ω′) = rkQ{

∫

α1
ω′, . . . ,

∫

αc
ω′} between 1 and c. If the

foliation digraph
−→
Γω is acyclic, by Lemma 2.4 we can construct an admissible

function f(x) such that
∫

αi
f(x)ω = 0 for all i, which adds 0 to RH . Otherwise

〈∫αi
ω′〉 6= 0, i.e., 0 /∈ RH . 2

Remark 4.9 Sometimes the undirected graph Γω can give information about
a = min(RH). Obviously, if Γω is acyclic, then a = 0. If Γω has loops, has
fewer than two vertices of degree 1, or has a vertex incident via multiple edges
to only one vertex, then a = 1. More generally, if Γω has a subgraph without
vertices of degree 1, which is connected to the rest of Γω by a cut edge or a
cut vertex, then a = 1.

4.3 The set R

In their influential paper [5], Arnoux and Levitt introduced the first non-
commutative Betti number b′1(M)—the maximum rank of a (non-Abelian) free
quotient group of the fundamental group π1(M) [13].

Recall that c(ω) is the number of homologically independent compact leaves
and m(ω) is the number of minimal components. We have previously shown [15]
that

c(ω) + m(ω) ≤ b′1(M), (13)

and on any manifold there exists a form for which equality holds.

Unfortunately, we are not aware of any practical methods of calculating b′1(M)
for a specific manifold. We can, however, bound b′1(M) from above by a value
h(M) ≤ b1(M), which can be nicely calculated for many specific manifolds;
see formulas in [7] also reproduced in [6].

Proposition 4.10 It holds that

b′1(M) ≤ h(M),
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where h(M) is the maximum rank of a subgroup in H1(M, Z) with trivial cup-
product ^ : H1(M, Z) × H1(M, Z) → H2(M, Z).

This follows from exactness of the bound (13), while c(ω)+m(ω) ≤ h(M) [14].

The proposition shows that in practice one can consider h(M) in upper bounds
involving b′1(M), such as Theorem 4.11 or Corollary 5.1 (ii) below.

We can now summarize our results as follows:

Theorem 4.11 Let R = {rk ω′ | ω′ ∈ [ω]}. Then 4

R =







[a, c(ω)], if Fω is compactifiable,

R∆ + [0, c(ω)], otherwise;
(14)

max(R) − min(R) ≤






b′1(M) − a, if Fω is compactifiable,

b1(M) − 2, otherwise,
(15)

where a is given by (12) and R∆ is given by (10). In particular,

min(R) =







a, if Fω is compactifiable,

r∆ ≥ 2, otherwise;
(16)

max(R) =







c(ω), if Fω is compactifiable,

R∆ + c(ω), otherwise,
(17)

where r∆ and R∆ are described by Proposition 4.2.

Note that in the non-compactifiable case, not all intermediate values be-
tween (16) and (17) are guaranteed to be reached; cf. Proposition 4.5.

PROOF. If Fω is compactifiable, then R∆ = ∅. In this case (14) is given
by (11) and then (15) follows from (13) given that m(ω) = 0. Assume now
that Fω has minimal components.

Then R∆ 6= ∅ by Proposition 4.2 (i). If c(ω) = 0, then by (8) we have R = R∆;
so assume c(ω) 6= 0. We can vary the form in each maximal component and
each set ∆j independently. Fixing ω′ in ∆, by Lemma 4.6 we can choose ω′

in maximal components such that
∫

z ω′ ∈ 〈Pj(ω
′)〉, z ∈ DHω. Together with

Proposition 4.8 this gives (14); then (17) and the equality in (16) are obvious.

4 We define A + B = {a + b | a ∈ A, b ∈ B}.

16



Finally, by definition max(R) ≤ b1(M). Proposition 4.2 (i) gives the lower
bound in (16) and then the upper bound in (15). 2

For compactifiable foliations, this theorem generalizes Theorem 4.1 from [14].

5 Corollaries in terms of manifold and foliation structure

Since Fω is an invariant of the collinearity class [ω], Theorem 4.11 allows one
to connect the foliation topology with R.

Corollary 5.1 In terms of the manifold structure:

(i) min(R) ≤ 1 iff the foliation is compactifiable. If 1 ∈ R, then the foliation
has homologically non-trivial compact leaves.

(ii) max(R) > b′1(M) implies that the foliation is non-compactifiable, i.e.,
has a minimal component.

The latter follows from (15) and (16).

Corollary 5.2 In terms of the foliation structure, |R| = 1 in the following
cases:

(i) R = {0} iff Fω is compactifiable and all its compact leaves are homolog-
ically trivial: c(ω) = 0. In particular, if b1(M) = 0, then R = {0}.

(ii) R = {1} iff Fω is compactifiable, c(ω) = 1, and
−→
Γω has a (unique) circuit.

(iii) R = {r}, r ≥ 2, iff Fω has minimal components, all of them connected
by singular leaves: k = 1 in (9), and all its compact leaves are homolog-
ically trivial: c(ω) = 0. In particular, these conditions hold for minimal
foliations.

Note that in (iii), Fω can contain several minimal components in spite of k = 1.

PROOF. Cases (i) and (ii) follow from (11), (12), and Corollary 5.1 (i).

(iii) Let c(ω) = 0 and k = 1. By (16) and (17) we have R ⊆ [r∆, R∆]. By
Proposition 4.2 (ii), (i), R∆ = r∆ ≥ 2.

Conversely, let R = {r}, r ≥ 2. By Corollary 5.1 (i) we have m(ω) ≥ 1 (thus
k ≥ 1), and by (16), (17) it holds r = r∆ = R∆ + c(ω). Since r∆ ≤ R∆, this
implies c(ω) = 0 and r∆ = R∆. Then Proposition 4.2 (iii) gives k ≤ 1. 2
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The topology of foliations that can be defined by a form of maximal possible
rank for a given M , rk ω = b1(M), is tightly connected with the structure of
the cup-product:

Theorem 5.3 Assume b1(M) ∈ R. Then rk ker^ ≥ c(ω).

PROOF. Denote by [γ] the homology class of a compact leaf, [ϕ] the coho-
mology class of a form ϕ, and D a Poincaré duality.

Let rk ω = b1(M) and γ ∈ Fω, [γ] 6= 0. We will construct a (non-Morse) form
ϕ such that [ϕ] = D[γ] and n[ϕ] ∈ ker^ for some n ∈ Z \ 0.

Namely, consider a (non-Morse) form ϕ such that Fϕ = Fω in a cylindrical
neighborhood of γ and ϕ ≡ 0 outside it; thus ϕ ∧ ω = 0. The form ϕ can
be chosen such that its cohomology class [ϕ] ∈ H1(M, Z) and [ϕ] 6= 0. Thus
[ϕ] ^R [ω] =

∑

αi([ϕ] ^ ξi) = 0, where ^R is the cup-product on H1(M, R)
and {ξi} is a basis in H1(M, Z). Define ui = [ϕ] ^ ξi.

Since rk ω = b1(M), all αi are independent over Q, so
∑

αiui = 0 implies that
all ui belong to the torsion of H2(M, Z). Therefore for some 0 6= n ∈ Z we
have n[ϕ] ^ ξi = 0 for all i; thus n[ϕ] ∈ ker ^. Since H1(M, Z) has no torsion,
n[ϕ] 6= 0.

Now, consider compact leaves γ1, . . . , γc(ω) from (1) and the corresponding ϕi

as above such that ni[ϕi] ∈ ker^ for some ni ∈ Z\0. Since the [γ1], . . . , [γc(ω)]
are independent, so are ni[ϕi]; thus rk ker^ ≥ c(ω). 2

Corollary 5.4 Assume b1(M) ∈ R and Fω is compactifiable. Then c(ω) =
b1(M) and ^ ≡ 0.

Indeed, by (17), c(ω) = b1(M); Theorem 5.3 gives ^ ≡ 0.

Corollary 5.5 Assume b1(M) ∈ R, b1(M) 6= 0. If ^ is non-degenerate,
then Fω has a minimal component: m(ω) ≥ 1, and all its compact leaves are
homologically trivial: c(ω) = 0.

This follows from Theorem 5.3 and Corollary 5.4.

Recall from Proposition 4.2 (ii) that
∑

rk ω|∆j
≤ max(R) ≤ b1(M), where

∆j are those connected components of the union ∆ of all non-compact leaves
and singularities that contain minimal components. The condition b1(M) ∈ R
from the last several statements does not necessarily require the rank of a
given form ω to be large; e.g.,

∑

rk ω|∆j
= b1(M) implies b1(M) ∈ R even if

rk ω is small. In particular:
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Corollary 5.6 If
∑

rk ω|∆j
= b1(M), then all compact leaves of Fω are ho-

mologically trivial: c(ω) = 0.

This follows from (17) and Proposition 4.2 (ii).

Example 5.7 Consider M2
g = ]g

j=1 T 2
j , a connected sum of g tori, and a form

ω that has a minimal component in each torus, but with the same group of
periods 〈1,

√
2〉; cf. Fig. 4. Then

∑

rk ω|∆j
= 2g and thus c(ω) = 0, even

though rk ω = 2.
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