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Abstract. We study the foliation defined by a closed 1-form on

a connected smooth closed orientable manifold. We call such a fo-

liation compactifiable if all its leaves are closed in the complement

of the singular set. In this paper, we give sufficient conditions for

compactifiability of the foliation in homological terms. We also

show that under these conditions, the foliation can be defined by

closed 1-forms with the ranks of their groups of periods in a certain

range. In addition, we describe the structure of the group gener-

ated by the homology classes of all compact leaves of the foliation.
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1. Introduction

Consider a closed 1-form ω on a connected smooth closed orientable
n-dimensional manifold M ; denote by Sing ω the set of its singularities.
On M \ Sing ω, this form defines a codimension-one foliation Fω. Such
foliations have important applications in modern physics, for example,
in the theory of supergravity [2, 3].

Compact foliations, that is, foliations that consist entirely of leaves
closed in M , i.e., compact, are well studied. However, the property of
compactness of a foliation is too restrictive: say, manifolds that admit a
compact foliation defined by a Morse form (locally the differential of a
Morse function) are sphere Sn and bundle over S1 (Proposition 2.5). In
addition, compactness is easily destroyed by a local perturbation of the
form, for example, by adding a local center—the trivial center-saddle
pairing [4].
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Instead, we study a weaker but more useful property: compactifia-
bility of the foliation. We call a foliation compactifiable if it consists
entirely of leaves closed in M \Sing ω, i.e., such leaves γ that γ∪Sing ω
is compact. Compactifiable foliations exist on any manifold—say, foli-
ations defined by the levels of a Morse function.

For Morse forms, compactifiability of a foliation has been extensively
studied in homological terms related with global characteristics of the
manifold [6, 7, 18], as well as using graph-theoretic methods [5, 12, 15].
Using the fact that Morse forms are dense in each cohomology class,
in this paper we generalize some of the known facts from Morse forms
to arbitrary closed 1-forms.

Specifically, we show that the foliation of a closed 1-form is compac-
tifiable if any of the following conditions holds:

(i) For any cycle z ∈ H1(M) that has zero homological intersection
with all compact leaves,

∫

z
ω = 0 (Theorem 4.2);

(ii) For some compact leaves γ1, . . . , γk ∈ Fω, there is no cycle in
Hn−1(M) homologically independent from them and homolog-
ically non-intersecting with them (Theorem 5.3);

(iii) There exist h(M) homologically independent leaves, where the
isotropy index h(M) is the maximum number of homologically
independent and mutually non-intersecting cycles in Hn−1(M)
(Corollary 5.4).

The latter simple condition is what best works in practice, because
h(M) can be easily computed for many manifolds, such as direct prod-
ucts and connected sums; see (2). It can also be estimated in terms of
the structure of the cup product ^ : H1(M) × H1(M) → H2(M) and
the Betti numbers b1(M), b2(M); see Proposition 2.4. In some cases,
this condition allows us to judge on the topology of the whole foliation
by a single leaf: for example, if on a torus T n there is one homologically
non-trivial compact leaf, then Fω is compactifiable, because h(T n) = 1
(Example 5.5).

Under the same conditions, the form’s rank (rank of the group of
periods) is bounded by c(ω), the maximum number of homologically
independent compact leaves of Fω. Moreover, unless all compact leaves
of Fω are homologically trivial, the same foliation can be defined by
closed 1-forms of any rank 1, . . . , c(ω) close to ω (Theorems 4.2, 5.3).
Forms that define the same foliation are called collinear; they have
been studied in [8].

As an important technical result useful to prove basic facts about
closed 1-forms, we show that the subgroup generated by the homology
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classes of all compact leaves of Fω has a basis consisting of homology
classes of compact leaves (Theorem 3.1).

The paper is organized as follows. In Section 2, we introduce neces-
sary definitions and facts concerning closed 1-form foliations, isotropic
subgroups (subgroups in Hn−1 with zero homological intersection),
isotropy index h(M), Morse forms, and close cohomologous forms. In
Section 3, we study the subgroup Hω ⊆ Hn−1(M) generated by all com-
pact leaves and, specifically, show that it contains a basis consisting of
homology classes of compact leaves. In Section 4, we prove a sufficient
condition for the compactifiability of a closed 1-form foliation in terms
of integrals on cycles that do not intersect compact leaves. Finally, in
Section 5 we give our main result: a sufficient condition for the com-
pactifiability of the foliation in terms of maximal isotropic subgroups
and the number of homologically independent compact leaves.

2. Definitions and useful facts

2.1. Foliations of closed 1-forms. Let M be a connected smooth
closed orientable n-dimensional manifold and ω a smooth closed 1-form
on it with the singular set Sing ω = { x ∈ M | ωx = 0 }. Obviously,
Sing ω is closed.

This form defines a codimension-one foliation Fω on M \ Sing ω.
Indeed, on the set M \ Sing ω the equation {ω(ξ) = 0}, where ξ ∈
T∗M , defines a (n − 1)-dimensional distribution. Since dω = 0, the
distribution is integrable, i.e., it is tangent to the leaves of a foliation;
we denote this foliation by Fω.

A leaf of a codimension-one foliation is either proper (for example,
closed in M \Sing ω), locally dense (its closure has non-empty interior),
or exceptional (its closure is transversally like a Cantor set).

We study leaves γ ∈ Fω closed in M \ Sing ω, i.e., such that γ \ γ ∈
Sing ω, that is, γ ∪ Sing ω is compact.

Definition 1. A leaf γ ∈ Fω is called compactifiable if γ ∪ Sing ω is
compact; otherwise it is called non-compactifiable. A foliation with all
leaves being compactifiable is called compactifiable.

Under this definition, compact leaves, i.e., the leaves closed in M ,
are compactifiable, too. A compact leaf has a cylindrical neighborhood
consisting of leaves diffeomorphic and homotopically equivalent to it:

Lemma 2.1 ([9, Lemma 3.1]). Let ω be a closed 1-form and γ ∈
Fω a compact leaf. Then for some neighborhood U(γ) there exists a
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diffeomorphism

θ : γ × (−ε, ε) → U(γ)

such that θ(γ, t) = γt ∈ Fω for any t ∈ (−ε, ε).

In such a neighborhood, we can vary integrals along curves by small
perturbation of the form leaving the foliation intact; see a more detailed
discussion for Morse forms in [9, Lemma 4.6 ff.]:

Lemma 2.2. Let ω be a closed 1-form, γ ∈ Fω a compact leaf, and
α : [0, 1] → M a curve transverse to leaves, γ ∩ α = p ∈ M . Then for
any neighborhood U(ω) ⊆ Ω1(M) and any neighborhood U = U(γ) ⊂
M there exists 0 < δ ∈ R such that for any c ∈ (1−δ, 1+δ) there exists
a closed 1-form ω′ ∈ U(ω) such that ω′ = ω on M \ U , Fω′ = Fω, and
∫

α
ω′ = c

∫

α
ω.

Proof. Consider a small enough cylindrical neighborhood Uε = Uε(γ) ⊂
U from Lemma 2.1 such that α is transverse to leaves in Uε. On
(−ε, ε) choose a positive function being large or small enough near 0
and constant 1 near the ends. It induces on M a function f constant
on leaves, f ≡ 1 outside Uε. Since f is constant on leaves, we have
d(fω) = df ∧ ω = 0, thus the form ω′ = fω is closed and Fω′ = Fω,
while

∫

α
ω′ can be varied. �

The rank of the form is rkω = rkQ im[ω], where [ω] : H1(M) → R is
the integration map. Obviously, 0 ≤ rk ω ≤ b1(M), the Betti number.
A form ω is exact if rk ω = 0.

2.2. Isotropic subgroups. A subgroup H ⊆ Hn−1(M) is isotropic
if it is dual to a subgroup with trivial cup-product, i.e., if it consists
of homologically non-intersecting cycles: z · z′ = 0 for any z, z′ ∈ H .
Any subgroup generated by one cycle is isotropic. Since leaves do not
intersect, the subgroup Hω generated by the homology classes of all
compact leaves of Fω is isotropic.

Maximal isotropic subgroups are studied in [11, 19]. For a given
manifold M , maximal isotropic subgroups can have different ranks; see
Example 2.3. The set H(M) of ranks of maximal isotropic subgroups
can be calculated for various types of manifolds [11]; in particular, for
the connected sum and direct product, it holds:

H(M ] N) = H(M) + H(N),

H(M × N) = { 1 } ∪ H(M) ∪H(N),
(1)

except that H(M × N) = H(M) if b1(N) = 0, the Betti number; we
denote A + B = { a + b | a ∈ A, b ∈ B }. Obviously, H(S1) = { 1 };
then H(T n) = { 1 } and H(M2

g ) = { g } (surface of genus g).
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Example 2.3. By (1), H(M2
2 ×S1) = { 1, 2 }; see Figure 1: one max-

imal isotropic subgroup is 〈[N ]〉, with N = M2
2 ; the other is 〈[T1], [T2]〉,

where T i = zi × S1, z1, z2 ⊂ N being homologically independent non-
intersecting closed curves.

Isotropy index h(M) = maxH(M) is the maximum rank of an
isotropic subgroup; (1) gives

h(M ] N) = h(M) + h(N),

h(M × N) = max{ h(M), h(N) }.
(2)

For instance, h(T n) = 1, h(M2
g ) = g, and h(M2

2 × S1) = 2.

The value h(M) can be estimated in terms of the cup product ^ : H1(M)×
H1(M) → H2(M) and the Betti numbers bi(M):

Proposition 2.4 ([11, Proposition 15]). Let dim M ≥ 2. Denote k =
dim ker ^. Then:

(i) It holds

b1(M) + k b2(M)

b2(M) + 1
≤ h(M) ≤

b1(M) b2(M) + k

b2(M) + 1
,

in particular, if b2(M) = 1, then

h(M) =
1

2
(b1(M) + k).

(ii) If ^ is surjective, then

h(M) ≤ k +
1

2
+

√

(

b1(M) − k −
1

2

)2

− 2 b2(M).

In this paper, we give a sufficient condition for the compactifiability
of a foliation in terms of h(M) (Corollary 5.4).

2.3. Morse form foliation. A Morse form ω is a closed 1-form that
is locally the differential of a Morse function. A Morse form folia-
tion is much simpler than that of a general closed 1-form. Its singular
set Sing ω is finite; its leaves are either compactifiable, i.e., closed in
M \ Sing ω, or locally dense ([1, 13]), the number of its non-compact
compactifiable leaves being finite. The structure of Morse form folia-
tions is well studied [7, 14].

Compactifiable Morse form foliations exist on any manifold, though
compact Morse form foliations exist on a very restricted class of mani-
folds:

Proposition 2.5. Let ω be a Morse form. If all leaves of Fω are
compact, then M is either a sphere or a bundle over S1.
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Proof. If Sing ω = ∅, then M is a bundle over S1 [22]. Let now Sing ω 6=
∅. Near a singularity p ∈ Sing ω, ind p = k, in a suitable coordinate
system xi the leaves of a Morse form are defined by the equation

(3) −
k

∑

i=1

(xi)2 +
n

∑

i=k+1

(xi)2 = const,

with xi(p) = 0 for all i. If there are different signs in (3), i.e. k 6= 0, n,
then a suitable section of a leaf containing the level (xi)2 − (xj)2 = 0 is
conic and thus its closure includes the singularity. Therefore a compact
Fω cannot have singularities other than centers (ind p = 0, n). By the
Reeb theorem [21], M is homeomorphic to Sn. �

In this paper, we partially generalize the following statements from
Morse forms to arbitrary closed 1-forms.

Denote by Hω ⊆ Hn−1(M) a subgroup generated by the homology
classes of all compact leaves of Fω.

Proposition 2.6 ([17, Theorem in Section 2]). Let ω be a Morse form.
If Hω is a maximal isotropic subgroup, then the foliation Fω is com-
pactifiable.

For a subgroup H ⊆ Hn−1(M), denote

H‡ = {z ∈ H1(M) | z · H = 0},

where · is the cycle intersection. Obviously, A ⊆ B implies B‡ ⊆ A‡.

Proposition 2.7 ([6, Theorem 7]). Let ω be a Morse form. The foli-
ation Fω is compactifiable if and only if H‡

ω ⊆ ker[ω].

Denote c(ω) = rkHω. For a Morse form foliation, c(ω) is the max-
imum number of homologically independent compact leaves of Fω [6,
Theorem 4]. In case of compactifiable foliation, this number bounds
the rank of a form that can define Fω:

Proposition 2.8 ([8, Proposition 4.8]). Let ω be a Morse form. If Fω

is compactifiable, then there exists a Morse form ω′ such that Fω′ = Fω

and rk ω′ = k if and only if

α ≤ k ≤ c(ω),

where α = 0 or 1, depending on the topology of the so-called directed
foliation graph of Fω.
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2.4. Close cohomologous forms. Foliations defined by close forms
can have very different topological structure: for example, a form with
rational coefficients on a torus defines a compact foliation, while a close
form with an irrational coefficient defines a winding, i.e., a minimal
foliation.

However, foliations of closed 1-forms that are both cohomologous
and close have, in some sense, similar topology. For example, compact
leaves are stable under small perturbations of the form in its cohomol-
ogy class. In particular, denote by F (Ω) the space of closed 1-forms
representing a class Ω ∈ H1(M, R); then:

Proposition 2.9 ([9, Theorem 3.1]). Let ω be a closed 1-form. There
exists a neighborhood U(ω) ⊆ F ([ω]) such that for any ω′ ∈ U(ω) it
holds Hω ⊆ Hω′.

The following statement makes facts concerning Morse form folia-
tions useful in the study of arbitrary closed 1-form foliations:

Proposition 2.10 ([20, Ch. 2, Theorem 1.25]). Let M be a closed
manifold. The set of Morse forms is open and dense in each cohomology
class Ω ∈ H1(M, R).

3. The subgroup Hω ⊆ Hn−1(M) generated by all compact

leaves

Denote by Hω the group generated by the homology classes of all
compact leaves.

A generating set of a free group might not contain its basis, e.g.,
Z = 〈2, 3〉; the generators in Z

2 = 〈(1, 0), (2, 3), (3, 2)〉 are indivisible.
However, any set of homology classes of non-intersecting connected
codimension-one submanifolds of M contains a basis of the group it
generates (unless the latter is trivial); in particular:

Theorem 3.1. Let Fω be a closed 1-form foliation on M and Hω ⊆
Hn−1(M) be the subgroup generated by the homology classes of all com-
pact leaves; Hω 6= 0. Then:

(i) In Hω, there exists a basis e consisting of homology classes of
leaves: e = {[γ1], . . . , [γc(ω)]}, γi ∈ Fω, c(ω) = rkHω.

(ii) For any compact leaf γ ∈ Fω, it holds [γ] =
∑

i∈I ±[γi], where
[γi] ∈ e and I ⊆ {1, . . . , c(ω)}.

Proof. (i) Since M is closed and oriented, its Hn−1(M) is a finitely
generated free abelian group, and so is Hω ⊆ Hn−1(M). Since it is
Noetherian, from any set of its generators a finite subset can be chosen:
Hω = 〈[γ1], [γ2], . . . , [γm]〉.
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Suppose [γi] are dependent. Let M ′ be the result of cutting M open
along all γi; then M ′ =

⋃

j M ′
j has at least two connected components

M ′
j, ∂M ′ consisting of two copies γ±

i of each γi. Since M is connected,

there is γk ⊂ M such that γ+
k and γ−

k lie in different components:
assume γ+

k ∈ ∂M ′
1. Then [γk] =

∑

i∈I1
±[γi], where the signs depend

on the orientation. Thus we can remove γk from the generating set and
repeat the process until obtaining a basis e of Hω.

(ii) Consider a compact leaf γ ∈ Fω, [γ] /∈ e. Obviously, γ ⊂ Int(M ′)
and cutting M ′ along γ will result in two connected components, M ′

+

and M ′
−, with ∂M ′

+ = γ+ ∪
⋃

γ+
i ; thus [γ] =

∑

i∈I ±[γi]. �

The same fact about Morse form foliations has been proved using
the finiteness of the foliation graph [6, Theorem 4].

4. Compactifiability of foliations with H‡
ω ⊆ ker[ω]

Here we generalize the sufficient condition from Proposition 2.7, and
partially Proposition 2.8, from Morse forms to arbitrary closed 1-forms.

Lemma 4.1. Let ω̃ be an exact 1-form on a compact manifold M̃ with
boundary. Then Fω̃ is compactifiable.

Proof. Let ω̃ = df . A leaf γ ∈ Fω̃ is a connected component of S =
f−1(a)\Crit(f), a level set of f without critical points Crit(f) = Sing ω̃;
since S is locally path-connected, its connected components are path-
connected. Consider p ∈ γ. Then p ∈ f−1(a) and in some spherical
neighborhood of p there exist coordinates xi such that f−1(a) = { x1 =
0 }; thus p ∈ γ. We obtained that γ is closed in M\Sing ω̃; in particular,
γ ∪ Sing ω̃ is compact. �

Recall that for an H ⊆ Hn−1(M), we denote

H‡ = { z ∈ H1(M) | z · H = 0 },

where · is the cycle intersection. Recall also that c(ω) = rkHω is the
maximum number of homologically independent compact leaves of Fω

(Theorem 3.1).
If the integral along any cycle that does not intersect compact leaves

is zero, then the foliation is compactifiable:

Theorem 4.2. Let ω be a closed 1-form on M such that H‡
ω ⊆ ker[ω],

where [ω] : H1(M) → R is the integration map. Then:

(i) Fω is compactifiable;
(ii) rk ω ≤ c(ω) and, if c(ω) ≥ 1, for any k = 1, . . . , c(ω) in any

neighborhood of ω there exists a closed 1-form ω′ defining the
same foliation, Fω′ = Fω, with rk ω′ = k.
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Proof. (i) By Theorem 3.1, we have Hω =
〈

[γ1], . . . , [γc(ω)]
〉

, where

γi ∈ Fω are homologically independent compact leaves. Let M̃ be
the result of cutting M open along γi. Then M̃ is connected, and ∂M̃
consists of two copies of each γi. Denote by ϕ : M̃ → M the gluing map;
the induced form ω̃ = ϕ∗ω defines on M̃ \ Sing ω̃ a foliation Fω̃ that
coincides with Fω defined on the whole M \ Sing ω, i.e., ϕ(F�

ω) = Fω.

Consider a closed curve s ⊂ M̃ . Obviously, [ϕ(s)] · Hω = 0, so
[ϕ(s)] ∈ H‡

ω ⊆ ker[ω]. We have
∫

s

ω̃ =

∫

s

ϕ∗ω =

∫

ϕ(s)

ω = 0,

i.e., the form ω̃ is exact. By Lemma 4.1, the foliation F�

ω is compacti-
fiable, and so is Fω.

(ii) Since the form ω̃ = df is exact on M̃ , the periods of ω are defined
by the cycles D[γ1], . . . , D[γc(ω)] ∈ H1(M); thus rk ω ≤ c(ω).

Denote by si curves realizing D[γi] and transverse to leaves in mu-
tually non-intersecting neighborhoods Ui = U(γi). Then si = αi ∪ s′i,
where αi = si ∩ Ui; see Figure 2. By Lemma 2.2, all

∫

αi

ω can be

independently varied by small perturbation of the form, ω′, without
changing the foliation, thus varying

rk ω′ = rkQ{

∫

si

ω′ | i = 1, . . . , c(ω) }

from 1 to c(ω). �

Whether Fω can be defined by an exact form, rkω′ = 0, depends on
other factors; see, e.g., Proposition 2.8.

Corollary 4.3. Let ω be a closed 1-form on a closed orientable surface
M2

g of genus g. If Fω has g homologically independent compact leaves,
then it is compactifiable.

Proof. We exploit the fact that dimFω = codimFω. Let γ1, . . . , γg be
homologically independent leaves of Fω. Then

H1(M
2
g ) = 〈[γ1], . . . , [γg], D[γ1], . . . , D[γg]〉

is a basis, where D is a Poincaré duality map, i.e., D[γi] · [γj ] = δij;
thus c(ω) = g and Hω = 〈[γ1], . . . , [γg]〉. For any z ∈ H‡

ω we have

0 = z · [γj] =
(

∑

ni[γi] +
∑

miD[γi]
)

· [γj] = mj

for all j; thus H‡
ω ⊆ Hω. Since obviously Hω ⊆ ker[ω], by Theorem 4.2,

the foliation Fω is compactifiable.
�
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For Morse form foliations, this fact has been known [16].

5. Compactifiability of foliations with maximal isotropic

Hω

As our main result, we generalize Proposition 2.6 from Morse forms
to arbitrary closed 1-forms, using the fact that Morse forms are dense
in any cohomology class.

Proposition 5.1. The set of closed 1-forms with a given maximal
isotropic Hω is open in the space F (Ω) of closed 1-forms representing
a class Ω ∈ H1(M, R).

Proof. Suppose a form ω ∈ F (Ω) defines a foliation with Hω being
maximal isotropic. By Proposition 2.9, there exists a neighborhood
U = U(ω) ⊂ F (Ω) such that for any ω′ ∈ U it holds Hω ⊆ Hω′.
Since Hω is maximal isotropic, Hω′ = Hω and thus is also maximal
isotropic. �

Proposition 5.2. Let ω be a closed 1-form such that some compact
leaves of Fω generate a maximal isotropic subgroup H ⊆ Hn−1(M).
Then:

(i) H = Hω, the subgroup generated by all compact leaves;
(ii) H‡

ω ⊆ ker[ω].

Proof. (i) is obvious since Hω is isotropic. (ii) By Propositions 5.1
and 2.10, in the cohomology class of ω there exists a Morse form ω′

with Hω′ = Hω. By Proposition 2.6, its foliation Fω′ is compactifiable,
and thus, by Proposition 2.7, H‡

ω′ ⊆ ker[ω′], i.e.,

H‡
ω = H‡

ω′ ⊆ ker[ω′] = ker[ω]. �

We obtain an important particular case of Theorem 4.2:

Theorem 5.3. Let ω be a closed 1-form on M such that the subgroup
generated by the homology classes of some compact leaves of its foliation
Fω is maximal isotropic. Then:

(i) Fω is compactifiable;
(ii) rk ω ≤ c(ω) and, if c(ω) ≥ 1, for any k = 1, . . . , c(ω) in any

neighborhood of ω there exists a closed 1-form ω′ defining the
same foliation, Fω′ = Fω, with rk ω′ = k.

Whether Fω can be defined by an exact form is, again, not discussed
here.

Recall that h(M) = maxH(M) is the maximum rank of an isotropic
subgroup of Hn−1(M).
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Corollary 5.4. If Fω has h(M) homologically independent compact
leaves, then it is compactifiable.

In this case, the statement (ii) above about the form ranks holds,
too.

Example 5.5. If on a torus T n there exists a homologically non-trivial
compact leaf, then the foliation Fω is compactifiable and rk ω ≤ 1.
Indeed, h(T n) = 1.

Example 5.6. If on M2
g there exist g homologically independent com-

pact leaves, then the foliation Fω is compactifiable. Indeed, h(M2
g ) = g.

This has also been shown as Corollary 4.3.

Note that Theorem 4.2 is stronger than Theorem 5.3; in particular,
the converse to Theorem 5.3 (i) is not true. The following counterex-
ample gives a compactifiable foliation that satisfies the conditions of
Theorem 4.2 (H‡

ω ⊆ ker[ω]) but not Theorem 5.3 (Hω is not maximal
isotropic):

Counterexample 5.7. Consider a foliation on M = T 2 with two
centers and two saddles, defined by an exact Morse form as shown in
Figure 3. Since the form is exact, H‡

ω ⊆ ker[ω] = H1(M); in particular,
Fω is compactifiable. However, since all its compact leaves are homo-
logically trivial, Hω = 0 (and H‡

ω = H1(M)). Thus Hω is not maximal
isotropic, since any 1-generated subgroup in Hn−1(M) is isotropic.
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Figures 13
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Figure 1. Two maximal subgroups of different ranks:
〈[N ]〉 and 〈[T1], [T2]〉. The sides of each cube are iden-
tified to form a 3-torus. In each 3-torus, a solid 2-torus
represented by the vertical cylinder is removed, and the
two obtained boundaries are identified to form one 3-
manifold. In this 3-manifold, three 2-submanifolds are
shown: N is a double 2-torus represented by the two hor-
izontal squares glued by the central circles, and T1 and
T2 are 2-tori represented by the vertical squares. Figure
borrowed from [11].
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Figure 2. By small perturbation of the form in the
neighborhoods U1, U2 of the compact leaves γ1, γ2 with-
out changing the foliation, the integrals along the closed
curves si = αi ∪ s′i can be made commensurable or in-
commensurable.
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Figure 3. Compactifiable Morse form foliation on T 2

with H‡
ω ⊆ ker[ω] but not maximal isotropic Hω. The

sides of the square are identified to form a torus. The
foliation of the height function on a suitably tilted torus
has two centers shown on the sides, two saddles shown
in the middle and on the corners, and four non-compact
compactifiable leaves shown as a cross; the rest of the the
torus is covered by homologically trivial compact leaves.
Figure borrowed from [10].




