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Abstract. Sharp bounds are given that connect split points—conic sin-
gularities of a special type—of a Morse form with the global structure of
its foliation.

1. Introduction and statement of main results

Consider a smooth closed oriented connected n-dimensional manifold M and
a smooth closed differential 1-form ω on it, dω = 0. By the Poincaré lemma, it
is locally the differential of a function: ω = df. We also assume f to be a Morse
function; then ω is called a Morse form.

Morse functions are smooth functions with non-degenerate singularities. Their
set is open and dense in the space of smooth functions [11], i.e., they are “typi-
cal” smooth functions. Likewise, Morse forms are “typical” closed 1-forms: their
set is open and dense in the space of all closed 1-forms on M .

The set of singularities Sing ω = {x ∈ M | ωx = 0} of a Morse form is finite.
On M \ Sing ω the form ω defines a foliation Fω constructed as follows: For any
x ∈ M \ Sing ω, the equation {ωx(ξ) = 0} defines a distribution of the tangent
bundle TxM . Since ω is closed, this distribution is integrable; its (connected)
integral surfaces are leaves of Fω. A leaf γ ∈ Fω adjoins a singularity s ∈ Sing ω
if γ ∪ s is connected.

If s has no adjoining leaves (the leaves surrounding it are spheres) then it is
called a center; we denote the set of all centers by Ω0(ω). If there is exactly
one leaf adjoining s then we call s a transformation point. If more than one leaf
adjoins s (up to four if dimM = 2 and two otherwise) then we call s a split

point; we denote the set of all split points by Ωsp
1 (ω).

The motivation behind the terms is that when passing a split point, a leaf
splits into two, as in Figure 1 imagining the leaf moving upward; see also Fig-
ure 3 (a). In contrast, when passing a transformation point, the leaf keeps its
integrity but transforms its shape, as in Figure 3 (b). Our notion of split points
coincides with what Levitt [16] referred to as blocking singularities because they
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are obstacles for continuation of the local holonomy map. However, we believe
that the term “split point” better reflects their simple geometrical meaning: they
split one leaf into two.

Figure 1. A center and a split point.

If dim M ≥ 3 then in any non-zero cohomology class there exists a form with
only transformation points [15, 20]. Transformation points were thoroughly
studied in [1, 15, 16]. We show, however, that it is split points that define the
global foliation structure.

Specifically, in this paper we shall study the value

d(ω) =
|Ωsp

1 (ω)| − |Ω0(ω)|

2
+ 1,

which we show to be non-negative. Generally there are almost no other re-
strictions on this value: in any suitably defined class it takes all integer and
half-integer values greater than the minimum for the class (Proposition 5.1).
However, we give lower and upper bound on d(ω) for some important classes of
forms and connect this value with the global structure of the foliation.

The intuition behind the value |Ωsp
1 (ω)| − |Ω0(ω)| is that one can locally add

any number of center-and-split-point pairs to a foliation without changing its
important properties; see Figure 1. Though not every center is attached to the
foliation by a split point—see Figure 3 (b), but cf. [2, 3, 20]—we show that the
value d(ω) is still meaningful.

On a 2-dimensional genus g surface M2
g , all non-center singularities are split

points; the Euler characteristic gives d(ω) = g. On the contrary, if dim M ≥ 3
then on a given manifold there exist forms with different values d(ω).

Our main result demonstrates that while d(ω) is connected with the properties
of a finite number of leaves, it defines the global structure of the foliation: the
number c(ω) of homologically independent compact leaves and the number m(ω)
of minimal components of the foliation. These important characteristics of the
foliation have been studied in [1, 14, 17]; various bounds on c(ω) + m(ω) have
been given in [6, 7, 18]. We show (Theorem 4.1) that

c(ω) + m(ω) ≤ d(ω); (1.1)
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what is more, for a “typical” Morse form (from a set open and dense in each
cohomology class) the inequality turns into equality:

c(ω) + m(ω) = d(ω).

For a foliation without minimal components, (1.1) implies an exact bound

rkω ≤ d(ω), (1.2)

where rkω is the number of independent (over Q) periods of ω; all integer and
half-integer values greater than this bound are reached on M (Proposition 5.4).
This can be rephrased as a condition for existence of minimal components: If
|Ω1| − |Ω0| < 2 rkω − 2, then the foliation has a minimal component (Corol-
lary 5.5).

Since Ωsp
1 (ω) ⊆ Ω1(ω) (the set of all conic singularities), our results imply

lower bounds on |Ω1(ω)| − |Ω0(ω)|, which is studied in the Novikov theory of
closed 1-forms and their singularities [4, 21].

A Morse form is called generic if any its leaf adjoins at most one singularity;
such forms are “typical” Morse forms: in each cohomology class their set is
open and dense [4]. For generic forms, d(ω) is integer (Proposition 5.6). While
on a given manifold M , a generic form can have an arbitrary large number of
conic transformation points (Remark 5.2), the number of its split points (up to
|Ω0(ω)|) is bounded (Proposition 5.6):

0 ≤ d(ω) ≤ b′1(M), (1.3)

where b′1(M) is the non-commutative Betti number—the maximal rank of a
free factor group of π1M [16]. All intermediate values are reached on M ; in
particular, the bounds are exact.

If a generic form has no minimal components, (1.2) and (1.3) combine into

rkω ≤ d(ω) ≤ b′1(M),

which is also exact with all intermediate values reached (Corollary 5.7).

The paper is organized as follows. In Section 2 we give necessary definitions
and prove some auxiliary lemmas. In Section 3 we introduce the notion of split
points and describe some their properties. In Section 4 we prove our main result,
showing that the number of split points defines the topology of the foliation.
Finally, in Section 5 we show that generally there are almost no restrictions on
d(ω), and give exact inequalities for some important special classes of forms in
terms of rk ω and b′1(M).

2. Morse form foliation

Let us introduce, for future reference, some useful notions and facts about
Morse forms and their foliations.
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2.1. Singularities. A closed 1-form on M is called a Morse form if it is locally
the differential of a Morse function. Let ω be a Morse form and Sing ω = {s ∈
M | ω(s) = 0} the set of its singularities; this set is finite since the singularities
are isolated and M is compact.

Since in a neighborhood of a singularity s we have ω = df , the foliation is
defined by a Morse function f ; by the Morse lemma there are local coordinates
x1, . . . , xn such that xi(s) = 0 and f(x) = f(0)−x2

1 −· · ·−x2
k +x2

k+1 + · · ·+x2
n.

The number k is called the index of the singularity s. In a neighborhood of
a singularity of index k and n − k the foliation defined by the levels of f has
the same topological structure; we denote the set of such singularities by Ωk(ω),
k ≤ n

2
.

Singularities s ∈ Ω0(ω) are called centers; a neighborhood of a center foliates
into concentric spheres. If ω is exact then Ω0(ω) 6= ∅ [19]; otherwise in each
cohomology class there exists a Morse form without centers: Ω0(ω) = ∅ [20,
Theorem 8.1].

Singularities s ∈ Ω1(ω) are called conic. In a neighborhood of a conic singu-
larity the singular level γ of the corresponding Morse function is (locally) a cone
with γ \ s being not connected. Non-singular levels near s are one-sheeted and
two-sheeted hyperboloids; see Figure 5.

At s ∈ Ωk(ω), k ≥ 2, the set γ \ s is connected; nearby non-singular levels are
one-sheeted hyperboloids.

2.2. Foliation. On M \ Sing ω the form ω defines a foliation Fω. On the whole
M we can define a singular foliation (which coincides with Fω on M \ Sing ω) as
a decomposition of M into leaves; two points p, q ∈ M belong to the same leaf if
there exists a path α : [0, 1] → M with α(0) = p, α(1) = q and ω(α̇(t)) = 0 for
all t. A singular leaf contains a singularity. A leaf γ ∈ Fω adjoins a singularity
s if γ ∪ s is connected, i.e., if s ∈ γ and they belong to the same singular leaf.

A Morse form is called generic if each γ ∈ Fω adjoins at most one singularity,
i.e., each singular leaf contains a unique singularity. A “typical” Morse form is
generic: in each cohomology class on a given M the set of generic forms is open
and dense [4].

A leaf γ ∈ Fω is called compactifiable if γ ∪ Sing ω is compact; otherwise it is
called non-compactifiable. If a foliation contains only compactifiable leaves it is
called compactifiable.

Note that compact leaves are compactifiable. There exists an open neighbor-
hood of a compact leaf γ consisting solely of compact leaves: indeed, integrating
ω gives f with df = ω near γ. Hence, the set covered by all compact leaves is
open.

The number of non-compact compactifiable leaves γ0
k is finite.
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Lemma 2.1 ([10]). Let γ0 ∈ Fω be non-compact compactifiable leaf and γ0 ∪ s
be compact for some s ∈ Sing ω. Then there exists a compact leaf γ ∈ Fω which

is close to γ0.

A maximal component Cmax
i of the foliation is a connected component of the

union of all compact leaves. Unless Sing ω = ∅, each maximal component is a
cylinder over a compact leaf:

Cmax
i

∼= γi × (0, 1),

where the diffeomorphism maps γi to leaves of Fω. The number of maximal
components is finite and can be estimated in terms of homological characteristics
of M and the number of singularities of ω [7].

A minimal component Cmin
j is a connected component of the the set covered

by all non-compactifiable leaves. This set is open; it has a finite number m(ω)
of connected components; each non-compactifiable leaf is dense in its minimal
component [1]. We say that a minimal component C contains a singularity
s ∈ Sing ω if its punctured neighborhood1 U ′(s) ⊆ C.

Components Cmax and Cmin are open; their boundaries lie in the union
⋃

γ0
k∪

Sing ω of compactifiable leaves and singularities.
The mentioned sets are mutually disjoint and form a partition of M [5]:

M =
(

⋃

Cmax
i

)

∪
(

⋃

Cmin
j

)

∪
(

⋃

γ0
k

)

∪ Sing ω. (2.1)

We call compact singular quasi-leaf a connected component Υ of the union
of non-compact compactifiable leaves and singularities, i.e., of the set M \
(
⋃

Cmax ∪
⋃

Cmin
)

; so Υ =
⋃

γ0
i ∪

⋃

sj , sj ∈ Sing ω. It can be a compact
singular leaf or a part of non-compactifiable singular leaf.

2.3. Foliation graph. The configuration formed by maximal components in
the decomposition (2.1) is described by the foliation graph. Rewrite (2.1) as

M =
(

⋃

Cmax
i

)

∪
(

⋃

Pj

)

,

where Pj is a connected component of the union P of all non-compact leaves
and singularities.

Since ∂Cmax
i ⊆ P consists of one or two connected components, each Cmax

i

adjoins one or two of Pj . This allows representing M as a connected graph Γ
(loops and multiple edges are allowed) whose edges are Cmax

i and vertices Pj ;
an edge Cmax

i is incident to a vertex Pj if ∂Cmax
i ∩ Pj 6= ∅; see Figure 2.

We distinguish between two types of vertices: I-vertices, which do not contain
minimal components (they consists solely of compactifiable leaves and singular-
ities) and II-vertices, which in addition contain minimal components.

1A punctured neighborhood U ′(s) = U(s) \ s, where U(s) is a neighborhood.
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Figure 2. Decompositions of the manifold and the correspond-
ing foliation graphs. In the graph on the right, P2 is a II-vertex;
all the other vertices are I-vertices.

The degree of a vertex P in the graph is the number of edges incident to this
vertex. Geometrically, deg P is the number of maximal components glued to P .
If P is a I-vertex, then it is a compact singular leaf unless deg P = 1, in which
case P is a center singularity.

If ω is generic, the vertices of the foliation graph have a rather simple struc-
ture:

Lemma 2.2. Let ω be generic. Then

(i) each I-vertex has degree no greater than 3;

(ii) each II-vertex contains a unique minimal component.

Proof. (i) In a small neighborhood of a compact singular leaf P the form is exact,
so the leaves of the foliation are levels of a Morse function. Since P contains
a unique singularity, close levels can have one or two connected components,
which are leaves. So deg P ≤ 3.

(ii) Consider a connected component ∂ of ∂Cmin, which is a compactfiable
leaf compactified by one singularity. By Lemma 2.1, there exists a compact leaf
close to ∂Cmin. Thus what is attached to Cmin by ∂ is an edge. �

2.4. Graph-theoretic facts. Let Γ be a connected graph with V vertices Pi

and E edges. The following simple facts can be found, e.g., in [12].
The degree sum formula states that

2E =
∑

deg Pi. (2.2)

The cycle rank m(Γ) of the graph is the number of its independent cycles;

m(Γ) = E − V + k, (2.3)
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where k is the number of connected components of Γ. In particular, E ≥ V − k.
If the graph Γ is considered a 1-dimensional simplicial complex, then

m(Γ) = b1(Γ), (2.4)

the first Betti number.

3. Split points

We call a non-center singularity a split point if more than one leaf adjoins
it; otherwise it is a transformation point. We denote the set of split points by
Ωsp

1 (ω). Obviously, only conic singularities can be split points, Ωsp
1 (ω) ⊆ Ω1(ω),

because for a singular leaf γ at any other singularity s the set γ \ s is connected.
At a split point, the two parts of the cone (without the singularity) globally

lie in different leaves. When passing such a singularity, one leaf splits up into
two; see Figure 3 (a). At a conic transformation point, the two parts of the cone
happen to globally lie in the same leaf, so that when passing such a singularity
the leaf only changes its homotopy type; see Figure 3 (b). 

s 

  γ 

  γ1   γ2 

s   γ 

  γ1 
(a) (b)

Figure 3. (a) s is a split point: the leaf γ splits on it up into
γ1 and γ2; (b) s is a transformation point: the leaf γ transforms
on it into γ1.

The number of split points defines the structure of the foliation graph. If
|Ωsp

1 (ω)| = 0, then the foliation graph is either (a) a chain or circle without
II-vertices (Fω is compactifiable) or (b) a unique II-vertex (Fω is minimal).

The following two statements are useful for the proof of our main theorem.
Recall that a compact singular quasi-leaf Υ is a connected component of M \
(
⋃

Cmax ∪
⋃

Cmin
)

; Υ =
⋃

γ0
i ∪

⋃

sj , sj ∈ Sing ω. Denote by SΥ ⊆ Ωsp
1 (ω) ∩ Υ

the set of split points that adjoin only leaves in Υ; this excludes from Sing ω∩Υ
all transformation points and split points adjoining a non-compactifiable leaf.

Definition 3.1 ([22]). A regular neighborhood U of X ⊂ M in M is a locally
flat, compact submanifold of M , which is a topological neighborhood of X such
that the inclusion X ↪→ U is a simple homotopy equivalence, and X is a strong
deformation retract of U .
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Since a quasi-leaf is a subcomplex of M , it has a regular neighborhood [13].

Lemma 3.2. Let dimM ≥ 3 and Υ be a compact singular quasi-leaf. Denote

by d(Υ) the number of connected components of U \ Υ, where U is a regular

neighborhood of Υ. Then

|SΥ| ≥ d(Υ) − 2. (3.1)

Proof. Denote by Ui connected components of U \ Υ; then d(Υ) = |{Ui}|; see
Figure 4 (a).

s1 

 U1 

s2 s 

(a) (b) 

 U2 

 U3  U4 
 U3  U4 

 U2  U1 
s1 

s2 

a 

b 

p ' 
 G 

γ 

 

Figure 4. (a) The regular neighborhood U of a compact sin-
gular quasi-leaf Υ; SΥ = {s1, s2}; s /∈ SΥ attaches a minimal
component to Υ. A closed path p′ ⊂ U with [p′] · Υ 6= 0 is
impossible. (b) Graph G is not connected.

We can assume that near s ∈ SΥ the boundary ∂U forms a one-sheeted and
a two-sheeted hyperboloids, see Figure 5. Consider a graph2 G = {{Ui}, SΥ},
where two vertices Ui, Uj are connected by a conic singularity s ∈ SΥ if lo-
cally they correspond to the opposite sheets of the two-sheeted hyperboloid; see
Figure 4 (b). We will show that G is not connected; then (3.1) follows from (2.3).

Consider an equivalence relation R on U \Υ: two points a, b are equivalent if
they are connected by a path p ⊂ U such that p(t) ∈ U \ Υ far from SΥ, and p
is allowed to cross Υ near s ∈ SΥ as shown in Figure 5 to connect sheets of the
two-sheeted hyperboloid.

Since U is a submanifold of M and Ui is open in U , each Ui is path-connected
and thus all points in Ui are equivalent under R. Thus R induces an equivalence
relation on the graph G; its equivalence classes are exactly connected components
of G. It remains to show that R has more than one equivalence class.

Consider two close points a, b ∈ U lying at the opposite sides of a leaf γ ⊆ Υ;
see Figure 4. Suppose they are equivalent under R, i.e., are connected by a path
p. For the closed curve p′ = p ∪ [a, b], the intersection index [p′] · Υ is odd and
thus nonzero, which contradicts the fact that Υ is a strong deformation retract of

2Loops and multiple edges are allowed.
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Uk 

Uj 

Ui 

s 

 

p 

Figure 5. U and p′ near s ∈ SΥ.

U . Thus a and b are not R-equivalent, the corresponding Ui belong to different
connected components of G, and (2.3) gives (3.1). �

Proposition 3.3. Let dimM ≥ 3. If a vertex P of the foliation graph Γ
contains m minimal components, then

|P ∩ Ωsp
1 (ω)| ≥ deg P + 2m − 2. (3.2)

Proof. Consider a graph Γ′ whose vertices are (minimal or maximal) components
of Fω and compact singular quasi-leaves Υi, and edges are connected components
Uij of Ui\Υi for a small regular neighborhood Ui of Υi. This is a bipartite graph:
an edge can only connect a quasi-leaf Υ with a component C, but not two Υ or
two C. The value d(Υi) from Lemma 3.2 is the degree of the vertex Υi in this
graph.

P Γ \ P 

︸︷︷︸

Cmax
i

︸︷︷︸

degP
︸︷︷︸

ΥP

︸︷︷︸

EP

︸︷︷︸

CP

Figure 6. A vertex P of the foliation graph Γ as graph Γ′.

A vertex P of the foliation graph Γ is a maximal connected subgraph of Γ′

that does not contain any maximal components Cmax
i ; see Figure 6. Denote
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by ΥP ⊆ {Υi}, CP ⊆ {Cmin
i }, and EP ⊆ {Uij} the sets of vertices and edges

belonging to this subgraph; |CP | = m. Obviously,
∑

Υ∈ΥP d(Υ) = deg P + |EP |,
thus by Lemma 3.2,

|
⋃

Υ∈ΥP

SΥ | ≥ deg P + |EP | − 2|ΥP |. (3.3)

Each Uij ∈ EP attaches to its Υ a minimal component, thus adding to it at
least one split point not from SΥ, so

|Ωsp
1 (ω) ∩ P \

⋃

Υ∈ΥP

SΥ| ≥ |EP |. (3.4)

Adding (3.3) to (3.4), we obtain |Ωsp
1 (ω)∩P | ≥ deg P+2|EP |−2|ΥP |, where (2.3)

applied to the subgraph P gives |EP | ≥ |ΥP | + m − 1. �

4. Main theorem

In the sequel we shall study the properties of the value

d(ω) =
|Ωsp

1 (ω)| − |Ω0(ω)|

2
+ 1. (4.1)

For a two-dimensional genus g surface M2
g , the Euler characteristic gives d(ω) =

g.
Recall that a form is generic if each of its singular leaves contains a unique

singularity. A minimal component is called weakly complete if it contains3 no
split points [16]. For dim M ≥ 3 the set of generic forms with weakly complete
minimal components is known to be open and dense in a cohomology class [8],
so such forms are “typical” in their class.

Theorem 4.1. Let M be a smooth closed oriented manifold and ω a Morse form

on it. Then

c(ω) + m(ω) ≤ d(ω), (4.2)

where c(ω) is the number of homologically independent compact leaves of the

foliation Fω and m(ω) is the number of its minimal components.

For generic forms with weakly complete minimal components it holds

c(ω) + m(ω) = d(ω). (4.3)

Note that at least for dim M ≥ 3 typically the equality holds; in particular,
the equation holds for generic forms with compactifiable foliation.

Proof. For M = M2
g it holds d(ω) = g, so (4.2) follows from c(ω)+m(ω) ≤ g [7]

and (4.3) from c(ω)+m(ω) = g for the corresponding class of forms [9]. Assume
dimM ≥ 3.

3In the sense of Section 2.2: U ′(s) ⊆ C.
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(i) Let the foliation graph Γ have V vertices Pi and E edges. Then by (2.3)
and (2.2) we have 2m(Γ) =

∑

i deg Pi−2V +2 =
∑

i(deg Pi−2)+2. For vertices
P that consist of center singularities s ∈ Ω0(ω) it holds deg P = 1, and for all
other vertices Proposition 3.3 gives deg Pi − 2 ≤ |Pi ∩ Ωsp

1 (ω)| − 2mi, where mi

is the number of minimal components in the vertex Pi. We obtain 2m(Γ) ≤
∑

i |Pi ∩ Ωsp
1 (ω)| − |Ω0(ω)| − 2m(ω) + 2, which together with m(Γ) = c(ω) [7]

gives (4.2).
(ii) If ω is generic and its minimal components are weakly complete, then

except for Ω0(ω) the inequality in Proposition 3.3 turns into equality, and so do
the above inequalities.

Indeed, for a non-center I-vertex P , which is a compact singular leaf, Lemma 2.2
gives deg P = 3 if it contains a (unique) split point and deg P = 2 if it contains
a transformation point; this turns (3.2) into equality.

A II-vertex P contains a minimal component Cmin. Since minimal compo-
nents of ω are weakly complete, Cmin does not contain split points, and since ω
is generic, each connected component ∂i of ∂Cmin contains a unique singularity.
By Lemma 2.2, this singularity must be a split point, Cmin is the only minimal
component in P , and deg P = |{∂i}| = |P ∩ Ωsp

1 (ω)|, which again turns (3.2)
into equality. �

The theorem allows us to describe the foliation structure in terms of the
number of split points. For example, if |Ωsp

1 (ω)| < |Ω0(ω)| then c(ω) = m(ω) = 0
and the foliation is compactifiable with all compact leaves being homologically
trivial.

If |Ω0(ω)| ≤ |Ωsp
1 (ω)| ≤ |Ω0(ω)| + 1 and the cohomology class [ω] 6= 0, then

Theorem 4.1 and Corollary 5.3 give c(ω)+m(ω) = 1 and the foliation has a very
simple structure; depending on rkω, we have:

(i) If rkω = 1 then Fω is compactifiable with c(ω) = 1, i.e., all leaves are
homologically equivalent, though they do not have to be diffeomorphic;
Fω is similar to S1 × something.

(ii) If rkω > 1 then Fω has a unique minimal components and all its compact
leaves are homologically trivial; Fω is similar to a minimal foliation.

Furthermore, for dimM ≥ 3 foliations with such a simple structure are known
to exist in any cohomology class [ω], namely:

rk[ω] = 1: There exists a compactifiable foliation with c(ω) =
1.

rk[ω] > 1: There exists a minimal and uniquely ergodic folia-
tion [1].

Indeed, in a non-zero cohomology class there exists a Morse form without
centers [20]. Among such forms there exists a form with Ωsp

1 (ω) = ∅ [1]; as
above, Theorem 4.1 and Corollary 5.3 give c(ω) + m(ω) = 1. The fact for
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rkω = 1 follows from (i) above. If rkω > 1, then by (ii) above the cycle rank of
the foliation graph m(Γ) = c(ω) = 0, i.e., Γ is a tree with exactly one II-vertex
P that contains the minimal component. If Fω had any compact leaves, then
Γ would have edges and thus terminal vertices other than P , which would be
centers in Fω. Thus the foliation is minimal; by [1], it is uniquely ergodic.

5. Bounds on d(ω)

Since for M2
g it holds d(ω) = g, in the sequel we shall assume dim M ≥ 3 unless

otherwise stated. We shall show that in the general case there are no restrictions
on d(ω) besides a very non-restrictive lower bound. However, compactifiable
foliations allow a stronger lower bound on d(ω) and generic forms allow an
upper bound. Naturally, generic compactifiable foliations allow both.

5.1. No upper bound. Levitt [15] proved that a small local perturbation
within the cohomology class can turn all split points into transformation points.
Figure 7 shows the converse: a local—though not small—perturbation within
the cohomology class can turn all conic transformation points into split points
and centers; each destroyed conic transformation point adds 1

2
to d(ω).

 

(a) (b) 

Figure 7. A transformation point can be turned into two split
points and one center. Gluing (a) and (b) together by the
boundaries into an Sn−1 × S1 gives d(ω) = 1

2
.

In this way an unlimited number of conic transformation points can be added
to any foliation:

Proposition 5.1. In a class of forms with given [ω], c(ω), m(ω), and compacti-

fiability, d(ω) takes all integer and half-integer values greater than the minimum

for this class.

Proof. Any foliation Fω can be locally modified preserving all its important
characteristics so that d(ω′) be arbitrary large and take all integer and half-
integer values d ≥ d(ω).

Indeed, consider a singular leaf shown in Figure 8. Its inside is S1 × Dn−2;
let it be foliated as shown in Figure 7 (b). Its outside leaves are spheres. Any
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number of such solid spheres can be attached through split points to the foliation
as shown in Figure 1. Each such sphere adds to Sing ω one transformation point
of index 2 (which happens to be conic for dimM = 3; see Figure 8), two centers,
and three split points (one of them attaches the sphere to the original foliation),
which increases d(ω) by 1

2
.

Figure 8. A sphere transforms into S1 × Sn−2.

This operation preserves the cohomology class (thus rkω), compactifiability,
c(ω), and m(ω) (as well as some other properties of Fω). �

Note that the form constructed in Proposition 5.1 is not generic.

Remark 5.2. In a class of forms with given d(ω), [ω], c(ω), m(ω), compactifia-
bility, and genericity, the number |Ωtr

1 (ω)| of conic transformation points takes
all values greater than the minimum for this class.

The proof is as in Proposition 5.1, with Figure 7 (a) used instead of Fig-
ure 7 (b).

5.2. Lower bound. Recall that [ω] is the cohomology class of ω; [ω] = 0 means
globally ω = df .

Corollary 5.3. It holds

d(ω) ≥

{

0 if [ω] = 0,

1 otherwise.

If dimM ≥ 3 then in each cohomology class the bound is exact and all greater

integer and half-integer values are reached.

Proof. While it is not obvious from the definition (4.1), Theorem 4.1 implies
d(ω) ≥ 0.

Suppose d(ω) ≤ 1

2
. Theorem 4.1 implies c(ω) = m(ω) = 0, thus Fω is

compactifiable with all compact leaves being homologically trivial. Then [ω] = 0,
because for a compactifiable foliation it holds [7]

rk ω ≤ c(ω). (5.1)
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Exactness for the case [ω] = 0 follows from the existence of compactifiable
foliation with c(ω) = rkω [6, Theorem 8]; Theorem 4.1 gives d(ω) = 0. On
the other hand, in any non-zero cohomology class there exists a Morse form ω
without split points and centers: Ωsp

1 (ω) = Ω0(ω) = ∅ [15]; d(ω) = 1.
Finally, all greater values are reached by Proposition 5.1. �

For d(ω) = 0 or 1

2
, Corollary 5.3 gives ω = df .

5.3. Lower bound for compactifiable foliations. If Fω is compactifiable,
then rkω ≤ b′1(M), the non-commutative Betti number [15]; indeed, rk ω ≤
c(ω) [7] and c(ω) ≤ b′1(M) [6].

For M = M2
g it holds b′1(M

2
g ) = g [6], so for a compactifiable foliation on M2

g

it holds rkω ≤ d(ω) = g.

Proposition 5.4. Let dimM ≥ 3 and Fω be compactifiable. Then

rkω ≤ d(ω);

On a given M this lower bound on d(ω) is exact and all larger values of d(ω)
are reached. Namely, for any non-negative integer r ≤ b′1(M) and any integer

or half-integer d ≥ r, on M there exists a form ω with rkω = r and d(ω) = d.

Proof. By (5.1) and Theorem 4.1 we have rk ω ≤ c(ω) ≤ d(ω), which gives the
bound. Let now r ≤ b′1(M). There exists a generic form with compactifiable
foliation such that c(ω) = r [6, Theorem 8]. Furthermore, for the same foliation
we can choose ω such that rkω = c(ω) [7, Theorem 4.1]. On the other hand, (4.3)
gives c(ω) = d(ω).

Finally, all values of d(ω) > r are reached by Proposition 5.1. �

In particular, a form with compactifiable foliation and a large rkω has many
split points—many more than centers. While in any cohomology class with
rkω > 1 there exist forms without split points, their foliations are minimal [15];
thus the only forms without split points with compactifiable foliation are rational
forms—those with rkω = 1, i.e., for some k ∈ R, k[ω] ∈ H1(M, Z).

Given (4.1), Proposition 5.4 can be considered as a condition for existence of
minimal components:

Corollary 5.5. If |Ω1| − |Ω0| < 2 rkω − 2, then the foliation has a minimal

component: m(ω) > 0.

5.4. Upper bound for generic forms. Recall that a form is called generic if
each its singular leaf contains a unique singularity (such forms are “typical”);
b′1(M) is the first non-commutative Betti number: the maximal rank of a free
factor group of π1M [15].

Proposition 5.6. Let ω be generic. Then d(ω) is integer and

0 ≤ d(ω) ≤ b′1(M); (5.2)
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on a given M the bounds are exact and all integer intermediate values are

reached.

Proof. Both the fact that |Ωsp
1 (ω)|−|Ω0(ω)| is even and the bounds on |Ωsp

1 (ω)|−
|Ω0(ω)| for generic forms were proved in [16].

It was shown in [6, Theorem 8 and Remark 12] that for any c within the
bounds (5.2) there exists a generic form ω with c(ω) = c and m(ω) = 0; thus ω
is trivially π1-stable. By Theorem 4.1, d(ω) = c(ω) + m(ω) = c. �

Corollary 5.7. If ω is generic and Fω compactifiable, then

rkω ≤ d(ω) ≤ b′1(M)

and for any non-negative integer r, d such that r ≤ d ≤ b′1(M), on M there

exists a generic form ω with rkω = r and d(ω) = d.

Proof. On M there exist generic forms with any c(ω) between 0 and b′1(M) [6],
and for the same Fω we can choose a form ω′ with any rk ω′ between 0 and
c(ω) [7]. Finally, d(ω′) = c(ω′) by Theorem 4.1. �
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