5. Ferapontov E. V. On the integrability of 3x3 semihamiltonian hydrodynamic type systems which do not possess Riemann invariants//Physica D. 1993. 63. 50—70.

Поступила в редакцию 07.06.95

БЮТН. МОСК. УН-ТА. СЕР. 1. МАТЕМАТИКА. МЕХАНИКА. 1996. № 4

УДК 515.164

И. А. Мельникова

ОСОБЫЕ ТОЧКИ МОРСКОЙ ФОРМЫ И СЛОЕНИЯ

В статье изучаются особые точки морской формы ω и их связь с со слоением \mathcal{F}_ω, определяемым этой формой.

В п. 1 приводятся необходимые определения. В п. 2 показывается, что число гомологически независимых слоев компактного слояния \mathcal{F}_ω и степень иррациональности формы ω определяются соотношением чисел особых точек индекса 0 и 1. В п. 3 для произвольной морской формы приводится соотношение между числами особых точек индекса 0 и 1, а также связанные с ним признаки компактности слояния.

1. Основные определения. Рассмотрим гладкое компактное связное ориентируемое n-мерное многообразие M и определенную на нем замкнутую 1-форму ω с морскими особенностями; такую форму мы называем морской. Обозначим множество ее особых точек через $\text{Sing } \omega$. Замкнутая форма ω определяет на множестве $M \setminus \text{Sing } \omega$ слоение \mathcal{F} коразмерности 1.

Определим на многообразии M слоение с особенностями \mathcal{F}_ω следующим образом.

Пусть в окрестности особой точки $p \in \text{Sing } \omega$ слоение \mathcal{F} локально определяется уровнями функции f_p, причем $f_p(p) = 0$. Очевидно, что $f_p^{-1}(0) \setminus p \subset \bigcup \gamma_i$, где $\gamma_i \in \mathcal{F}$.

Слон $\gamma \in \mathcal{F}$ называется неособым слоем \mathcal{F}_ω, если $\forall p \in \text{Sing } \omega \gamma \cap \bigcap f_p^{-1}(0) = \emptyset$.

Обозначим $F_p = p \cup \{\gamma \in \mathcal{F} \mid \gamma \cap f_p^{-1}(0) \neq \emptyset\}$. Пусть $F = \bigcup_{p \in \text{Sing } \omega} F_p$.

Особым слоем γ_0 слоения \mathcal{F}_ω называется максимальная связная компонента множества F.

Слоение называется компактным, если все его слои компактны.

Сопоставим каждому неособому компактному слою $\gamma \in \mathcal{F}_\omega$ его гомологический класс $[\gamma]$. Образ множества неособых компактных слоев при этом отображении порождает подгруппу в $H_{n-1}(M)$. Обозначим ее H_{ω}.

Пусть p — особая точка морской формы ω и $x^1, ..., x^n$ — координаты в окрестности p, такие что

$$\omega = \sum_{i=1}^{\lambda} x^i dx^i - \sum_{i=\lambda+1}^n x^i dx^i.$$
Индексом ind p особой точки p называется число $\min (\lambda, n-\lambda)$ [1]. Обозначим через Ω_i множество особых точек индекса i.

Степень иррациональности формы ω называется число

$$\text{det} \omega = r_k \left(\sum_{z_1, \ldots, z_m} \omega \right) = 1,$$

где z_1, \ldots, z_m — базис в $H_1(M)$ [2].

2. Особые точки компактного слоения. Рассмотрим особую точку $p \in M$. В некоторой окрестности точки p форма ω точна, и, следовательно, слоение \mathcal{F} в этой окрестности определяется поверхностями уровня некоторых функций $f, f(p) = 0$. Если $\text{ind} p \neq 1$, то все поверхности уровня функции f локально линейно связны. Если $\text{ind} p = 1$, то для малого $\varepsilon > 0$ локально в окрестности точки p поверхность уровня f_ε (или $f_{-\varepsilon}$) функции f является двуполостным гиперболоидом и имеет локально две компоненты связности.

Пусть $\gamma_0 \in \mathcal{F}$ — компактный особый слой. Функция f, уровнями которой локально задается слоение, может быть определена в окрестности всего слоя γ_0, причем для достаточно малого ε множество $W = \{ f = 1 - \varepsilon, \varepsilon \}$ не содержит других особых слоев. Нетрудно показать, что если $f_\varepsilon = \bigcup_{i=1}^{k_+} \gamma_i^+$ и $f_{-\varepsilon} = \bigcup_{i=1}^{k_0} \gamma_i^-$, то особый слой содержит не менее $k + s - 2$ особых точек из Ω_i. В частности, если $\gamma_0 \cap \Omega_i = \emptyset$, то поверхности уровня связны: $f_\varepsilon = \gamma_i^+$ и $f_{-\varepsilon} = \gamma_i^-$. Заметим, что поскольку $\partial W = f_\varepsilon \cup f_{-\varepsilon}$, поверхности уровня f_ε и $f_{-\varepsilon}$ гомологичны:

$$\Sigma [\gamma_i^+] - \Sigma [\gamma_i^-] = 0. \quad (1)$$

Таким образом, гомологический класс слоя может изменяться только при переходе через особый слой, содержащийся из Ω_i, т. е. если $[\gamma_i^+] \neq [\gamma_i^-]$, то $\gamma_0 \cap \Omega_i = \emptyset$. Особая точка из Ω_0 порождает гомологически тривиальный слой.

Пусть $\text{Sing} \omega \neq \emptyset$. Рассмотрим U — множество всех особых компактных слоев, оно представляется в виде $U = \bigcup \mathcal{C}(\gamma)$, где $\mathcal{C}(\gamma)$ — максимальная цилиндрическая окрестность неособого компактного слоя γ, состоящая из диффеоморфных ему слоев. Число цилиндров $\mathcal{C}(\gamma)$ конечно, поскольку каждая особая точка лежит в крае не более чем четырех цилиндров. Следовательно, $\overline{U} = \bigcup_{i=1}^{k} V_i$, где $V_i = \overline{\mathcal{O}(\gamma_i)}$. Если слоение \mathcal{F} компактно, то, как показано в работе [3], определено разбиение всего многообразия M на множества V_i. Край ∂V_i лежит в объединении особых слоев γ_0.

Сопоставим множеству U конечный граф Γ, при этом множествам V_i будут соответствовать ребра графа, а компонентам связности пересечения $\gamma_0 \cap \mathcal{U}$ — вершины, где γ_0 — особый слой. Ребро V_i инцидентно вершине $\gamma_0 \cap \mathcal{U}$, если $\partial V_i \cap \gamma_0 \neq \emptyset$. Граф Γ назовем ассоциированным графом множества компактных слоев.

Граф Γ имеет два типа вершин:

1) $\gamma_0 \cap \mathcal{U} = \gamma_0$, т. е. особый слой является компактным. Если $\gamma_0 \cap \Omega_0 = \emptyset$, то соответствующая вершина имеет степень 1. Если $[\gamma_0 \cap \Omega_1] = \emptyset$, то вершина имеет степень не больше, чем $m + 2$. Если $\gamma_0 \cap \Omega_1 = \emptyset$, то вершина имеет степень 2;

2) $\gamma_0 \cap \mathcal{U} = \emptyset$, т. е. особый слой некомпактен. Нетрудно показать, что если $[\gamma_0 \cap \Omega_1] = m + 1$, то вершина имеет степень не больше, чем m. 38
Если слоение \mathcal{F}_ω компактно, то граф Γ является связным. В общем случае он может иметь несколько компонент связности.

Введем ориентацию на графе Γ. Поскольку множество $\text{Int}V_i$ не содержит особых точек и в нем $\omega=df_i$, то определено направление роста функции f_i; выберем ориентацию на графе Γ в соответствии с направлениями роста функций f_i. Заметим, что так выбранная ориентация согласована с выбором знаков в выражении (1).

Теорема 1. Пусть слоение \mathcal{F}_ω компактно, тогда

$$\text{rk} H_\omega \leq \frac{1}{2} (|\Omega_1| - |\Omega_0|) + 1.$$

Доказательство. Если $\text{Sing} \omega = \emptyset$, то все слои гомологичны, $\text{rk} H_\omega = 1$ и утверждение теоремы выполнено.

Пусть $\text{Sing} \omega \neq \emptyset$, тогда для слоения \mathcal{F}_ω определен ассоциированный граф Γ. Поскольку слоение \mathcal{F}_ω компактно, граф Γ является связным. Каждая его вершина определяет линейное уравнение (1), связывающее гомологические классы слоев $\gamma_i \in V_i$, а весь граф Γ определяет систему из P таких уравнений с Q неизвестными, где P — число вершин графа, Q — число ребер. Ранг $\text{rk} H_\omega$ равен рангу пространства решений этой системы. Матрицей системы является матрица инцидентности связного графа Γ размерности $P \times Q$, ранг которой по теореме 13.6 [4] равен $P - 1$, следовательно, $\text{rk} H_\omega = Q - P + 1$.

Пусть k_i — число вершин степени i, тогда $P = \sum_{i \geq 0} k_i$ и по теореме 2.1 [4] $2Q = \sum_{i \geq 0} i k_i$. С другой стороны, $k_1 = |\Omega_1|$ и $\sum_{i \geq 1} (i - 2) k_i \leq |\Omega_1|$.

Теорема 1 доказана.

Согласно [3] для компактного слоения морской формы $\text{dirr} \omega \leq \text{rk} H_\omega - 1$, таким образом, доказана следующая

Теорема 2. Если слоение морской формы ω компактно, то

$$\text{dirr} \omega \leq \frac{1}{2} (|\Omega_1| - |\Omega_0|).$$

3. Некомпактные слоения. Из теоремы 1 следует, что для компактного слоения $|\Omega_0| < |\Omega_1| + 2$. Обобщим этот результат на случай произвольного слоения морской формы.

Теорема 3. Пусть ω — морская форма. Тогда

1) $|\Omega_0| < |\Omega_1| + 2$;
2) если $|\Omega_0| > |\Omega_1|$, то $\omega=df$, слоение \mathcal{F}_ω компактно и $\text{rk} H_\omega = 0$.

Доказательство. В случае $\Omega_0 \neq \emptyset$ утверждение теоремы очевидно выполнено.

Пусть $\Omega_0 \neq \emptyset$. Заметим, что первое утверждение теоремы непосредственно следует из второго и теоремы 1. Докажем второе утверждение теоремы. Пусть $|\Omega_0| > |\Omega_1| > 0$.

Рассмотрим U — множество неособых компактных слоев. Так как $\Omega_0 \neq \emptyset$, то $U \neq \emptyset$ и определен ассоциированный граф Γ. Пусть N_i — компоненты связности множества U, соответственно $U = N_1 \cup \ldots \cup N_k$.

Поскольку $\Omega_0 \subset \cup N_i$, то для некоторого N_i, скажем для N_1, выполняется неравенство $|\Omega_0||N_1| > |\Omega_1||N_1|$. Пусть Γ_1 — компонента связности графа Γ, соответствующая множеству N_1.

Граф Γ_1 может иметь:

1) m вершин, соответствующих особым точкам индекса 0, степень такой вершины равна 1;
2) с вершин, соответствующих компактным особым слоям, лежащим в \(U \), степень такой вершины больше 1. Обозначим через \(s_i \) число таких вершин степени \(i \), \(s = \sum_{i>1} s_i \). Как было показано в п. 2, число особых точек из \(\Omega_1 \), соответствующих этим вершинам, не меньше, чем \(\sum_{i>1} (i-2) s_i \).

3) \(t \) вершин, соответствующих некомпактным особым слоям. Обозначим через \(t_i \) число таких вершин степени \(i \), \(t = \sum_{i>0} t_i \). Как было показано в п. 2, число особых точек из \(\Omega_1 \), соответствующих этим вершинам, не меньше, чем \(\sum_{i>0} it_i \).

Таким образом, неравенство \(\mid\Omega_0 \cap N_1\mid > \mid\Omega_1 \cap N_1\mid \) переписывается следующим образом:

\[
m > \sum_{i>1} (i-2) s_i + \sum_{i>0} it_i.
\]

С другой стороны, согласно теореме 2.1 [4] и следствию 4.5 (а) [4] для связного графа, число вершин степени \(i \) которого равно \(p_i \), справедливо неравенство \(\sum_{i>1} (i-2) p_i + 2 \geq 0 \), что для графа \(\Gamma \) записывается в виде

\[
\sum_{i>1} (i-2) s_i + \sum_{i>0} (i-2) t_i - m + 2 \geq 0.
\]

Сопоставление этих двух неравенств дает \(2t - \sum_{i>0} t_i < 2 \), т. е. \(t = 0 \).

Следовательно, \(\partial N_1 = \emptyset \), так как компактные особые слои не могут лежать в крае \(N_1 \). Поскольку многообразие \(M \) связно, то \(M = N_1 \) и слоение \(\mathcal{F}_\omega \) компактно. В силу теоремы 2 имеем \(\text{d}_\omega \omega = -1 \), т. е. \(\omega = d\tilde{\omega} \).

Согласно теореме 1 получаем \(r_\omega = 0 \). Теорема 3 доказана.

Нет, если \(\mid\Omega_0\mid < \mid\Omega_1\mid \), то слоение компактно. Рассмотрим случай, когда \(\mid\Omega_0\mid < \mid\Omega_1\mid < \mid\Omega_0\mid + 1 \).

Теорема 4. Пусть \(0 < \mid\Omega_1\mid - \mid\Omega_0\mid \leq 1 \). Слоеие \(\mathcal{F}_\omega \) компактно тогда и только тогда, когда \(\text{d}_\omega \omega \leq 0 \).

Доказательство. Если \(\text{d}_\omega \omega < 0 \), то слоение \(\mathcal{F}_\omega \) компактно согласно [2]. Обратно, пусть слоение \(\mathcal{F}_\omega \) компактно. Тогда по теореме 2 имеем \(\text{d}_\omega \omega \leq \frac{1}{2} (\mid\Omega_1\mid - \mid\Omega_0\mid) \). Теорема 4 доказана.

Автор выражает благодарность профессору А. С. Мищенко за постоянное внимание к работе и полезные замечания.

Работа выполнена при частичной поддержке Международного научного фонда и правительства Российской Федерации, грант N MGM300.

СПИСОК ЛИТЕРАТУРЫ

2. Н. Н. Ч. О. С. П. Гамильтонов формализм и многообразный аналог теории Морса//Журнал матем. наук. 1982. 37. вып. 5. 3–49.

Поступила в редакцию 09.06.96