Ph.D. (mathematics)
Hide detailsResearch interests 
Profiles 



Isotropy index for the connected sum and the direct product of manifolds. Publicationes Mathematicae Debrecen, to appear in vol. 90, 2017.
Abstract: A subspace or subgroup is isotropic under a bilinear map if the restriction of the map on it is trivial. We study maximal isotropic subspaces or subgroups under skewsymmetric maps, and in particular the isotropy indexthe maximum dimension of an isotropic subspace or maximum rank of an isotropic subgroup. For a smooth closed orientable manifold $M$, we describe the geometric meaning of the isotropic subgroups of the first cohomology group with different coefficients under the cup product. We calculate the corresponding isotropy index, as well as the set of ranks of all maximal isotropic subgroups, for the connected sum and the direct product of manifolds. Finally, we study the relationship of the isotropy index with the first Betti number and the corank of the fundamental group. We also discuss applications of these results to the topology of foliations.
Key words: Isotropic subspace, cohomology, cup product
MSC: 15A63, 15A03, 58K65
JCR impact factor: 0.438 (2015)
This site provides a preprint version of the paper. See final version on the journal's site.
The corank of the fundamental group: the direct product, the first Betti number, and the topology of foliations. Mathematica Slovaca, accepted in 2016.
Abstract: We study $b'_1(M)$, the corank of the fundamental group of a smooth closed connected manifold $M$. We calculate this value for the direct product of manifolds. We characterize the set of all possible combinations of $b'_1(M)$ and the first Betti number $b_1(M)$ by explicitly constructing manifolds with any possible combination of $b'_1(M)$ and $b_1(M)$ in any given dimension. Finally, we apply our results to the topology of Morse form foliations. In particular, we construct a manifold $M$ and a Morse form $\omega$ on it for any possible combination of $b'_1(M)$, $b_1(M)$, $m(\omega)$, and $c(\omega)$, where $m(\omega)$ is the number of minimal components and $c(\omega)$ is the maximum number of homologically independent compact leaves of $\omega$.
Key words: corank, inner rank, manifold, fundamental group, direct product, Morse form foliation
MSC 2010: 14F35, 57N65, 57R30
JCR impact factor: 0.451 (2013)
This site provides a preprint version of the paper.
Corank and Betti number of a group. Czechoslovak Mathematical Journal, 65(2):565–567, 2015.
Abstract: For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called corank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group's rank, corank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsionfree). In addition, we show that the Betti number is additive with respect to the free product and the direct product of groups. Our results are important for the theory of foliations and for manifold topology, where the corresponding notions are related with the cutnumber (or genus) and the isotropy index of the manifold, as well as with the operations of connected sum and direct product of manifolds.
Key words: corank, inner rank, fundamental group
MSC 2010: 20E05, 20F34, 14F35
JCR impact factor: 0.294 (2013)
This site provides a preprint version of the paper. See final version on the journal's site; doi: 10.1007/s1058701501950.
The number of minimal components and homologically independent compact leaves of a weakly generic Morse form on a closed surface. Rocky Mountain Journal of Mathematics, 43(5):1537–1552, 2013.
Abstract: On a closed orientable surface $M^2_g$ of genus $g$, we consider the foliation of a weakly generic Morse form $\omega$ on $M^2_g$ and show that for such forms $c(\omega) + m(\omega) = g  1/2 k(\omega)$, where $c(\omega)$ is the number of homologically independent compact leaves of the foliation, $m(\omega)$ the number of its minimal components, and $k(\omega)$ the total number of singularities of $\omega$ surrounded by a minimal component. We also give lower bounds on $m(\omega)$ in terms of $k(\omega)$ and the form rank $rk \omega$ or the structure of $ker [\omega]$, where $[\omega]$ is the integration map.
Key words: Surface; Morse form foliation; number of minimal components
MSC 2000: 57R30, 58K65
JCR impact factor: 0.260 (2009), 0.443 (2010), 0.389 (2012)
This site provides a preprint version of the paper. See final version on the journal's site; doi: 10.1216/RMJ20134351537.
Close cohomologous Morse forms with compact leaves. Czechoslovak Mathematical Journal, 63(2):515–528, 2013.
Abstract: We study the topology of foliations of close cohomologous Morse forms on a smooth closed oriented manifold. We show that if a closed form has a compact leave $\g$, then any close cohomologous form has a compact leave close to $\g$. Then we prove that the set of Morse forms with compactifiable foliations is open in a cohomology class, and the number of homologically independent compact leaves does not decrease under small perturbation of the form; moreover, for generic forms this number is locally constant.
Key words: Morse form foliation, compact leaves, cohomology class
MSC 2010: 57R30, 58K65
JCR impact factor: 0.265 (2010), 0.300 (2012)
This site provides a preprint version of the paper. See final version on the journal's site; doi: 10.1007/s1058701300340.
The number of split points of a Morse form and the structure of its foliation. Mathematica Slovaca, 63(2):331–348, 2013; Zbl pre06163523.
Abstract: Sharp bounds are given that connect split pointsconic singularities of a special typeof a Morse form with the global structure of its foliation.
Key words: Morse form; singularities; foliation; foliation graph
MSC 2000: 57R30, 58K65
JCR impact factor: 0.316 (2010), 0.451 (2013)
This site provides a preprint version of the paper. Final version on the journal's site: doi: 10.2478/s121750130101x.
Structure of a Morse form foliation on a closed surface in terms of genus. Differential Geometry and its Applications, 29(4):473–492, 2011; Zbl 1223.57022.
Erratum: In Corollary 25, "nonplanar a compact singular leaf" should read "a nonplanar compact singular leaf."
Abstract: We study the geometry of compact singular leaves $\gamma$ and minimal components $C^{min}$ of the foliation $F$ of a Morse form $\omega$ on $M^2_g$ in terms of genus $g(\cdot)$. We show that $c(\omega) + \sum_\gamma g(V(\gamma)) + g(\bigcup \overline {C^{min}})=g$, where $c(\omega)$ is the number of homologically independent compact leaves and $V(\cdot)$ is a small closed tubular neighborhood. This allows us to prove a criterion for compactness of the singular foliation $\overline F$, to estimate the number of its minimal components, and to give an upper bound on the rank $rk \omega$, in terms of genus.
Key words: Morse form foliation; minimal component; compact singular leave; genus; isotropic subgroup
MSC 2000: 57R30, 58K65
JCR impact factor: 0.669 (2009), 0.521 (2010), 0.484 (2012)
This site provides a preprint version of the paper. Final version on the journal's site: doi: 10.1016/j.difgeo.2011.04.029
On collinear closed oneforms. Bulletin of the Australian Mathematical Society, 84(2):322–336, 2011; Zbl 1226.57040.
Abstract: We study oneforms with zero wedgeproduct, which we call collinear, and their foliations. We characterise the set of forms that define a given foliation, with special attention to closed forms and forms with small singular sets. We apply the notion of collinearity to give a criterion for existence of a compact leaf and to study homological properties of compact leaves.
Key words: differential oneform; singular set; foliation; compact leaves; cupproduct
MSC 2000: 57R30, 58A10
JCR impact factor: 0.302 (2009), 0.392 (2010), 0.480 (2012)
This site provides a preprint version of the paper. See the paper on the journal's site and on the editor's site. doi: 10.1017/S0004972711002310.
On compact leaves of a Morse form foliation. Publicationes Mathematicae Debrecen, 78(1):37–48, 2011; Zbl 1240.57011.
Abstract: On a compact oriented manifold without boundary, we consider a closed 1form with singularities of Morse type, called Morse form. We give criteria for the foliation defined by this form to have a compact leaf, to have $k$ homologically independent compact leaves, and to have no minimal components.
Key words: Morse form foliation, compact leaves, collinear 1forms, form rank
MSC 2000: 57R30, 58K65
JCR impact factor: 0.646 (2009), 0.568 (2010), 0.322 (2012)
This site provides a preprint version of the paper. Version "in print". Final version on the journal's website; doi: 10.5486/PMD.2011.4369.
Ranks of collinear Morse forms. Journal of Geometry and Physics, 61(2):425–435, 2011; Zbl 1210.57027.
Erratum: Section 1, paragraph 3: "in general relativity and quantum cosmology" should read "in general relativity".
Abstract: On a smooth closed $n$manifold, we consider Morse forms with wedgeproduct zero; we call such forms collinear. This is an equivalence relation. Collinearity classes are classified by the underlying foliation; so, in other words, we study the set of Morse forms that define the same foliation. We describe the set of the ranks of such forms and show how it is related to the structure of the foliation and the manifold.
Key words: Collinear Morse forms, Morse form foliation, form's rank, minimal components, compact leaves
MSC 2000: 57R30, 58K65
JCR impact factor: 0.714 (2009), 0.652 (2010), 1.055 (2012)
This site provides a preprint version of the paper. Final version on the journal's website; doi: 10.1016/j.geomphys.2010.10.010
Number of minimal components and homologically independent compact leaves for a Morse form foliation. Studia Scientiarum Mathematicarum Hungarica, 46(4):547–557, 2009.
Erratum: page 551, "the next $k_1$ factors correspond to the set of weakly complete minimal components," should read "<...> not weakly complete <...>".
Abstract: The numbers $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves of the foliation of a Morse form $\omega$ on a connected smooth closed oriented manifold $M$ are studied in terms of the first noncommutative Betti number $b_1'$. A sharp estimate $0 \le m(\omega) + c(\omega) \le b_1'$ is given. It is shown that all values of $m(\omega) + c(\omega)$, and in some cases all combinations of $m(\omega)$ and $c(\omega)$ with this condition, are reached on a given $M$. The corresponding issues are also studied in the classes of generic forms and compactifiable foliations.
Key words: Morse form foliation, minimal components, compact leaves
MSC 2000: 57R30, 58K65
JCR impact factor: 0.229 (2009), 0.197 (2010), 0.421 (2012)
This site provides a preprint version of the paper. Final version on the journal's website; doi: 10.1556/SScMath.2009.1108.
On the structure of a Morse form foliation. Czechoslovak Mathematical Journal, 59(1):207–220, 2009; Zbl 1224.57010.
Abstract: The foliation of a Morse form $\omega$ on a closed manifold $M$ is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of $M$ and $\omega$. Conditions for the presence of minimal components and homologically nontrivial compact leaves are given in terms of $rk \omega$ and $Sing \omega$. The set of the ranks of all forms defining a given foliation without minimal components is described. It is shown that if $\omega$ has more centers than conic singularities then $b_1(M) = 0$ and thus the foliation has no minimal components and homologically nontrivial compact leaves, its foliation graph being a tree.
Key words: number of minimal components, number of maximal components, compact leaves, foliation graph, rank of a form
MSC 2000: 57R30, 58K65
JCR impact factor: 0.306 (2009), 0.265 (2010), 0.300 (2012)
This site provides a preprint version of the paper. A final version on the journal's site (direct link to PDF), another final version on the journal's site; doi: 10.1007/s1058700900155.
Presence of minimal components in a Morse form foliation. Differential Geometry and its Applications, 22(2):189–198, 2005; Zbl 1070.57016.
Abstract: Conditions and a criterion for the presence of minimal components in the foliation of a Morse form $\omega$ on a smooth closed oriented manifold $M$ are given in terms of (1) the maximum rank of a subgroup in $H^1(M,Z)$ with trivial cupproduct, (2) $ker [\omega]$, and (3) $rk \omega = rk im [\omega]$, where $[\omega]$ is the integration map.
Key words: Morse form foliation, minimal components, form rank, cupproduct
MSC 2000: 57R30, 58K65
JCR impact factor: 0.391 (2005), 0.669 (2009), 0.521 (2010), 0.484 (2012)
This site provides a draft version for preview purposes. Final version: doi: 10.1016/j.difgeo.2004.10.006.
Maximal isotropic subspaces of skewsymmetric bilinear mapping.
Moscow University Mathematics Bulletin
54(4):1–3,
1999;
Zbl 0957.57018.
Translated from:
Максимальные изотропные подпространства кососимметрического билинейного
отображения.
Вестник МГУ, Сер. матем., мех. 4:3–5, 1999.
Erratum: The paper deals with compactifiable foliations and not compact.
Zentralblatt review: The paper continues the author’s investigations [I. A. Mel’nikova, Math. Notes 58, No. 6, 13021305 (1995); translation from Mat. Zametki 58, No. 6, 872877 (1995; Zbl 0857.57030); Russ. Math. Surv. 50, No. 2, 444445 (1995); translation from Usp. Mat. Nauk 50, No. 3, 217218 (1995; Zbl 0859.58005)] in which the compactness problem for the Morse form foliation on a closed manifold $M^n$ is considered. The author discusses the problem of calculation of the maximal isotropic subgroup in $H_{n1}(M)$ with respect to the operation of intersection of homology classes. The upper and lower estimates are established and some examples are considered when $M = T^n$ is an $n$dimensional torus and $M = M^2_g$.
MSC: 57R30, 57M07, 54H10 (according to Zentralblatt)
JCR: not indexed
Noncompact leaves of foliations of
Morse forms.
Mathematical Notes 63(6):760–763,
June 1998;
Zbl 0917.57022.
Translated from:
Некомпактные слои слоения морсовской формы.
Математические заметки 63(6):862–865, 1998.
Erratum: The paper deals with (non)compactifiable leaves and not (non)compact.
Abstract: In this paper foliations determined by Morse forms on compact manifolds are considered. An inequality involving the number of connected components of the set formed by noncompact leaves, the number of homologically independent compact leaves, and the number of singular points of the corresponding Morse form is obtained.
Keywords: Morse forms, noncompact leaves of foliations, twodimensional manifolds
Zentralblatt review: Let $M$ be a compact connected oriented manifold of dimension $n$ with a closed 1form $\omega$ having only Morse singularities (Morse form). Let $F_\omega$ be a foliation with singularities on $M$ and $[\gamma]$ the homology class of a nonsingular compact leaf $\gamma \in F_\omega$. The image of the set of nonsingular compact leaves generates a subgroup $H_\omega$ in $H_(n1)(M)$. By $\Omega_i$ denote the set of singular points of index $i$. In this note an inequality involving the number $s$ of connected components of the set formed by noncompact leaves, the number of homologically independent compact leaves, and the number of singular points of the corresponding Morse form $\omega$ is obtained. Theorem. The following inequality holds: $r_k H_\omega + s \le 1/2 (\Omega_1  \Omega_0) + 1$. P. Arnoux and G. Levitt [Invent. Math. 84, 141–156 (1986; Zbl 0561.58024)] obtained an estimate of $s$ in terms of characteristic of $M$: $s \le 1/2 b_1(M)$. These two estimates coincide for $n = 2$, and they are independent in the case $n > 2$. The method is based on some results of graph theory.
Keywords: singular points of a foliation (according to Zentralblatt)
MSC: 57R30, 53C12, 57R20 (according to Zentralblatt)
JCR impact factor: 0.157 (2001), 0.344 (2010)
Download or preview this paper from Springer's site; doi: 10.1007/BF02312769. Locally mirrored preview (RoMEO green publication according to ResearchGate).
Russian: info and full text on the journal's site (open access). The Russian title above links to a locally mirrored file.
Properties of Morse forms that determine
compact foliations on $M_g^2$.
Mathematical Notes 60(6):714–716,
1996;
Zbl 0898.57012.
Translated from:
Свойства морсовской формы, определяющей компактное слоение на $M^2_g$.
Математические заметки 60(6):942–945, 1996.
Erratum: The paper deals with compactifiable foliations and not compact.
Abstract: In [1, 2] P. Arnoux and G. Levitt showed that the topology of the foliation of a Morse form $\omega$ on a compact manifold is closely related to the structure of the integration mapping $[\omega]: H_1(M) \to R$. In this paper we consider the foliation of a Morse form on a twodimensional manifold $M_g^2$. We study the relationship of the subgroup $Ker [\omega] \subset H_1(M_g^2)$ with the topology of the foliation. We consider the structure of the subgroup $Ker [\omega]$ for a compact foliation and prove a criterion for the compactness of a foliation.
Keywords: twodimensional manifold, foliation, Morse form, integration over cycles.
Zentralblatt review: P. Arnoux and G. Levitt [Invent. Math. 84, 141–156 (1986; Zbl 0561.58024); ibid. 88, 635–667 (1987; Zbl 0594.57014)] showed that the topology of the foliation of a Morse form $\omega$ on a compact manifold is closely related to the structure of the integration mapping $[\omega]: H_1(M) \to \mathbb{R}$. In this paper, the author considers the foliation of a Morse form on a twodimensional manifold $M_g^2$. He studies the relationship of the subgroup $Ker [\omega] \subset H_1(M_g^2)$ with the topology of the foliation, considers the structure of the subgroup $Ker [\omega]$ for a compact foliation and proves a criterion for the compactness of a foliation.
Keywords: integration over cycles; Morse form; twodimensional manifold; compact foliation (according to Zentralblatt)
MSC: 57R30, 58C25, 58K99 (according to Zentralblatt)
JCR impact factor: 0.157 (2001), 0.344 (2010)
Download or preview this paper from Springer's site; doi: 10.1007/BF02305168. Locally mirrored preview (RoMEO green publication according to ResearchGate).
Russian: info and full text on the journal's site (open access). The Russian title above links to a locally mirrored file.
Singular points of a Morsian form and foliations.
Moscow University Mathematics Bulletin
51(4):33–36,
1996;
Zbl 0914.58006.
Translated from:
Особые точки морсовской формы и слоения.
Вестник МГУ, Сер. матем., мех. 4:37–40,
1996.
Errata: The title should have been translated as "Singularities of a Morse form and foliation". Where the paper mentions the irrationality degree $dirr$, it would be more common to refer to the form rank: $dirr\omega = rk\omega  1$. The paper deals with compactifiable foliations and not compact.
Zentralblatt review (I had to correct their translation of terminology): Let $M$ be a smooth compact connected orientable $n$dimensional manifold on which a 1form $\omega$ with Morse singularities is defined. On the manifold $M$, a foliation with singularities $F_\omega$ is defined. The irrationality degree of the form $\omega$ is determined by $dirr \omega = rk_Q \{\int_{z_1}\omega, ..., \int_{z_m}\omega\}  1$, where $z_1, ..., z_m$ is the basis in $H_1(M)$. It is proved that in the case of a compact foliation, the irrationality degree of the form and the number of homologically independent leaves are determined by the difference of the numbers of singularities of index 0 and 1.
Keywords: Morse forms; foliation; singular points (according to Zentralblatt)
MSC 2000: 58E05 22E70 (according to Zentralblatt)
JCR impact factor: 0.01 (1999)
A test for compactness of a
foliation.
Mathematical Notes 58(6):1302–1305, 1995;
Zbl 0857.57030.
Translated from:
Признак компактности слоения.
Математические заметки 58(6):872–877, 1995.
Erratum: The paper deals with compactifiable foliations and not compact.
Abstract: We investigate foliations on smooth manifolds that are determined by a closed 1form with Morse singularities. We introduce the notion of the degree of compactness and prove a test for compactness.
Zentralblatt review: We investigate foliations on smooth manifolds that are determined by a closed 1form with Morse singularities. The problem of investigating the topological structure of level surfaces for such a form was posed by S. P. Novikov [Russ. Math. Surv. 37, No. 5, 156 (1982); translation from Usp. Mat. Nauk 37, No. 5(227), 349 (1982; Zbl 0571.58011)]. This problem was treated in [S. P. Novikov, Tr. Mat. Inst. Steklova 166, 201209 (1984; Zbl 0553.58005); A. V. Zorich, Math. USSR, Izv. 31, No. 3, 635655 (1988); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 51, No. 6, 13221344 (1987; Zbl 0668.58004); Le Ty Kuok Tkhang, Math. Notes 44, No. 1/2, 556562 (1988); translation from Mat. Zametki 44, No. 1, 124133 (1988; Zbl 0656.58007); L. A. Alaniya, Russ. Math. Surv. 46, No. 3, 211212 (1991); translation from Usp. Mat. Nauk 46, No. 3(279), 179180 (1991; Zbl 0736.58001)]. The present paper is devoted to the compactness problem for level surfaces. We introduce the notion of degree of compactness and prove a test for compactness expressed in the terms of the degree. The present paper is a natural continuation of [the author, Math. Notes 53, No. 3, 356358 (1993); translation from Mat. Zametki 53, No. 3, 158160 (1993; Zbl 0809.57018)].
MSC: 57R30 (according to Zentralblatt)
JCR impact factor: 0.157 (2001), 0.344 (2010)
Download or preview this paper from Springer's site; doi: 10.1007/BF02304889. Locally mirrored preview (RoMEO green publication according to ResearchGate).
Russian: info and full text on the journal's site (open access). The Russian title above links to a locally mirrored file.
A test for noncompactness of the foliation of a Morse
form.
Russian Mathematical Surveys 50(2):444–445, 1995;
Zbl 0859.58005.
Translated from:
Признак некомпактности слоения морсовской формы.
Успехи математических наук 50(3):217–218, 1995.
Erratum: The paper deals with (non)compactifiable foliations and not (non)compact.
The paper has no abstract.
MSC: 57R30, 53C12, 58Kxx
Zentralblatt review: The author studies foliations determined by a closed 1form with Morse singularities on smooth compact manifolds. More precisely, the author investigates the problem of the existence of a noncompact leaf, verifies a test for noncompactness of a foliation in terms of the degree of irrationality of the considered 1form, and shows that the noncompactness of a foliation is a case of general position.
Keywords: Morse form; foliations; noncompactness (according to Zentralblatt)
MSC: 58C25, 58K99, 58E05 (according to Zentralblatt)
JCR impact factor: 0.363 (2001), 0.496 (2010)
Download or preview this paper from IOP's site; doi: 10.1070/RM1995v050n02ABEH002092. Locally mirrored preview (RoMEO classification unknown to ResearchGate).
Russian: info and full text on the journal's site (open access). The Russian title above links to a locally mirrored file.
An indicator of the noncompactness of a foliation on $M_g^2$.
Mathematical Notes 53(3):356–358, 1993;
Zbl 0809.57018.
Translated from:
Признак некомпактности слоения на
$M_g^2$.
Математические заметки 53(3):158–160, 1993.
Erratum: The paper deals with (non)compactifiable foliations and not (non)compact.
The paper has no abstract.
Zentralblatt review: Let $\omega$ be a closed form on a manifold $M$ and possessing nondegenerate isolated singularities. A point $p \in M$ is called a regular singularity of $\omega$, if in some neighbourhood $O(p)\omega = df$, where $f$ is a Morse function having a singularity at $p$. The form $\omega$ determines a foliation $F_\omega$ on the set $M  Sing\omega$. Let $M = M^2_g$, the orientable closed surface of genus 2. The homology classes $[\gamma]$ of the nonsingular compact leaves of $F_\omega$ generate a subgroup of $H_1(M^2_g)$ denoted by $H_\omega$. If $[z_1], ..., [z_{2g}]$ is a basis of $H_1(M^2_g)$ we define $dirr\omega = rk_\mathbb{Q}{\int_{z_1}\omega, ..., \int_{z_{2g}}\omega}  1$. By $M_\omega$ is denoted the set obtained by discarding all maximal neighbourhoods consisting of diffeomorphic compact leaves and all leaves which can be compactified by adding singular points. Theorem 1. $M_\omega = \emptyset \Leftrightarow rk H_\omega = g$. Theorem 2. If $\omega$ is a closed form with Morse singularities given on $M^2_g$ ($g \ne 0$) such that $dirr\omega \ge g$, then the foliation $F_\omega$ has a noncompact fiber.
JCR impact factor: 0.157 (2001), 0.344 (2010)
Download or preview this paper (English) from Springer's site; doi: 10.1007/BF01207728. Locally mirrored preview (RoMEO green publication according to ResearchGate).
Russian: info and full text on the journal's site (open access). The Russian title above links to a locally mirrored file.
Rank of a maximal subgroup in $H^1(M,Z)$ with trivial cupproduct. Fourth International Conference of Applied Mathematics and Computing (FICAMC), Plovdiv, Bulgaria, August 12–18, 2007.
Abstract: Let $M$ be a smooth closed oriented manifold, $h^{max}(M)$ be the maximal rank of a maximal subgroup in $H^1(M,Z)$ with trivial cupproduct, and $h^{min}(M)$ the minimal rank of such a subgroup. It has been shown that the value of $h(M)$ characterizes the topology of Morse form foliations on $M$: e.g., if $rk \omega > h(M)$, where $\omega$ is a Morse form on $M$, then its foliation has a minimal component. We give upper and lower bounds on $h{max}(M)$ and $h^{min}(M)$ in terms of the first and second Betti numbers. In addition, we calculate these values for a connected sum and direct product of manifolds.
Only abstract was published.
Locally mirrored copy of the proceedings.
Compact foliations of a Morse form on $M_g^2$. International Conference on Topology and Applications in memory of P.S. Alexandroff (1896–1982). Moscow, Russia, May 27–31, 1996.
Erratum: The talk deals with compactifiable foliations and not compact.
This talk had no publication.
Compact foliations of Morse
forms.
PhD thesis (in Russian). MSU, 1995.
И.А. Мельникова.
Компактные слоения морсовских форм.
Дисс... к.ф.м.н., МГУ, 1995.
Erratum: The thesis deals with compactifiable foliations and not compact.
Summary: Sufficient condition for compactifiability of a Morse form foliation, an upper bound on the rank of a Morse form defining a compactifiable foliation, and a lower bound on the number of the conic singularities of a Morse form defining a compactifiable foliation are given.
See the officially published abstract.
Last modified 20160823 